
Supplementary Figure 1. Flowchart for data collection and quality control. 

  



 

Supplementary Figure 2. Identification of major cell types in HNSCC samples. 

A. The major cell types were identified and annotated by clusters, patients, HPV (negative, positive), 

and tissues (PBL, tumor). 

B. Heatmap depicted the expression of marker genes used for cell type annotations.  

C. Major cell types were annotated by patients.  

HPV, human papillomavirus; PBL, peripheral blood lymphocytes. 

  



 

Supplementary Figure 3. Identification of malignant epithelial cells in scRNA-seq datasets by 

inferring CNV. 

  



 

Supplementary Figure 4. Sub-clustering of malignant epithelial cells from different cohorts.  

A. Consensus clustering of 14 patient samples from GSE164690 identified optimal k for 

classification using iCMS classifier genes.  

B. Hierarchical clustering of 14 patient samples from GSE164690. 

C-F. PCA of epithelial patient-specific pseudobulk transcriptomes for each cohort (C. GSE103322, 

D. SNOW study, E. GSE195832, F. GSE181919).  

G. Correlation heatmap indicated the highly similarity between samples in same iCMS subtype using 

pooled cohorts (Spearman’s correlation, r value). 



 

Supplementary Figure 5. Reproducing of iCMS classification in independent cohorts.  

A. Consensus clustering of 14 patient samples from GSE164690 identified optimal k for 

classification using genes identified from GSE103322.  

B. PCA of epithelial patient-specific pseudo-bulk transcriptomes for each cohort using the same 

gene set identified from GSE103322. 

C. Correlation heatmap indicated the highly similarity between samples in same iCMS subtype using 

pooled cohorts (Spearman’s correlation, r value). 

D. Associations between iCMS and canonical 4 transcriptional subtypes of HNSCC were shown. 

The metagene scores for each cell were calculated by averaging the scaled expressions within the 

same transcriptional subtype. 



 

Supplementary Figure 6. The iCMS classification is recapitulated in HNSCC cell lines.  

Cells were annotated by cell line, pool ID and iCMS, which were classified by PCA.  

  



 

Supplementary Figure 7. Construction of malignant epithelial cell differentiation trajectory 

by pseudotime analyses.  

A. Pseudotime of iCMS malignant epithelial cells in GSE164690 inferred by Slingshot. Left panel, 



UMAP representation of iCMS subgroups. Right panel, pseudotime trajectory was plotted and cells 

were colored by pseudotime.  

B, C. Pseudotime of iCMS malignant epithelial cells in GSE103322 inferred by Monocle2 (B) and 

Slingshot (C). Left panel, cells colored by iCMS subtypes. Right panel, pseudotime trajectories were 

plotted and cells were colored by pseudotime.  

  



 

Supplementary Figure 8. Differential gene expression profiles along pseudotime trajectory.  

A. Differentially expressed genes along pseudotime trajectory were clustered and functionally 

annotated. 

B. Loess regression-smoothened genes expression of stemness (TP63, CD44, MET) and epithelial 

differentiation (KRT13) markers along the pseudotime trajectory.  

C. Differences in expression patterns of stemness (TP63, CD44, MET, YAP1) and epithelial 

differentiation (KRT10, KRT13) markers among iCMS malignant epithelial subsets by Wilcoxon 

rank-sum test.  

  



 

Supplementary Figure 9. The iCMS classification is applied to multiple HNSCC bulk 

transcriptomes. 

Correlation matrix displayed the Pearson correlation significance (P-value) calculated across the 

HNSCC samples in each indicated bulk transcriptomes dataset (TCGA-HNSC, CPTAC-HNSC, 

GSE65858, GSE40774, GSE42743, GSE41613 and GSE39366, respectively). 

 



 

Supplementary Figure 10. The iCMS subtype is identified as an independent prognostic 

factor.  

A. Distributions of anatomical sites and HPV status among iCMS patient subpopulations in TCGA-

HNSC dataset.  

B. Multivariate Cox regression analysis identified iCMS subtype was identified as an independent 

prognostic factor after adjusting for HPV status, anatomical site, clinical stage, and other 

clinicopathological parameters. 

C. Kaplan-Meier curves showed that among these canonical transcriptional subtypes, patients were 

further categorized into subgroups with superior or inferior survival (Log-rank test). 

  



 

Supplementary Figure 11. Genomic features of iCMS. 

A. CNV in chromosome arm-level among three iCMS subtypes were plotted and representative 

genes involved in these CNV regions were highlighted.  

B. TMB was calculated and compared among iCMS1-3 (Wilcoxon rank-sum test). 

C. Detailed distributions of driver mutations among iCMS1-3 in TCGA-HNSC dataset were shown 

and compared.  

D. Scatter plots of ratios of TCGA-HNSC samples with mutations in selected pathways. Dot size 

corresponds to FDR by two-sided Chi-square test with BH-correction. 

CNV, copy number variation; TMB, tumor mutational burden. 

  



 

Supplementary Figure 12. Characterization of TME among iCMS. 

A. Sankey plot showed the relationship between iCMS subtypes and pan-cancer TME subtype (MFP) 

defined by Alexander Bagaev in 2021 (1). D: Desert; F: Fibrotic; IE: Immune-Enriched Non-Fibrotic; 

IE/F: Immune-Enriched Fibrotic. 

B. Heatmap depicted the immune infiltration among iCMS subtypes calculated by xCell. 

C. Dot plot displayed the marker genes of fibroblast subpopulations. 

D. Marker genes of CD8+ T-cells were shown.  

TME, tumor microenvironment  



 

Supplementary Figure 13. Drug repurposing analyses based on iCMS. 

A. Dot plot indicated gene dependencies among iCMS subtypes. Only genes with FDR < 0.05 

were shown. 

B. Four drug sensitivity databases (CTRPv2, GDSC1, GDSC2, PRISM) were used to discover 

therapeutic vulnerabilities in iCMS. Agents from these four databases were pooled and annotated 

by their targeted pathways. 

C-E. The responsiveness to chemotherapy (5-FU and Cisplatin, C), targeted therapy (cetuximab, D) 

and immunotherapy (anti-PD-1, E) were compared among iCMS by SubMap analyses.  

  



 

Supplementary Figure 14. Development and validation of a novel prognostic signature. 

A. Kaplan-Meier plots of our 7-gene prognostic signature in training (TCGA-HNSC), validation 

(GSE41613, GSE42743, Log-rank test). 

B. The predictive performance of this 7-gene signature was assessed by ROC analyses with end 

points at 3-year and 5-year in three HNSCC cohorts (TCGA-HNSC, GSE42743 and GSE41613), 

respectively.  

C. ROC analyses compared the performance of our 7-gene prognostic signature, selected 

clinicopathological parameters and a previously published 13-gene signature in TCGA-HNSC 

dataset (2).  

ROC, receiver operating characteristic. 

  



 

Supplementary Figure 15. Development of a novel 17-gene signature for Cetuximab 

treatment response. 

A. Flowchart of analytic pipeline used for signature construction by machine learning. Ten machine 

learning algorithms (Lasso, GBM, Ridge, survivalSVM, superPC, plsRcox, CoxBoost, Enet, StepCox, 

RSF) were utilized and the optimal model was determined based on C-Index values in each 

predictive model. 

B. ROC analyses compared the performance of our 17-gene signature and two previously published 

gene signatures for EGFRi sensitivity in GSE183881 dataset. EGFRi signature 1: Goodspeed A, et 

al (3); EGFRi signature 2: Byers LA, et al (4). 

  



 

Supplementary Figure 16. Development of a novel 21-gene signature for anti-PD-1 treatment 

response. 

A. Flowchart of analytic pipeline used for signature construction by multiple machine learning 

approaches. 

B. This 21-gene signature was applicable in bladder (IMVigor210, Powles T, et al.) (5), gastric (Kim’s 

mGC, Kim ST, et al.) (6) cancer and melanoma (GSE91061, Riaz N, et al.) (7) patients treated with 

anti-PD-1 into response or non-response subgroups. Detailed patient treatment response was 

retrieved from original papers and compared with Wilcoxon rank-sum test test. 

C. ROC analyses compared the performance of our 21-gene signature, 4 previously published gene 

signatures and PD1/CD8A expression for anti-PD-1 sensitivity in GSE159076 dataset. Cytotoxic 

score: Rooney MS, et al (8); immune GEP: Roh W, et al (9); T cell GEP: Huang AC, et al (10); HOT 



score: Foy JP, et al(11). 
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