Supplementary Figure Legends

Materials and Methods

The human colorectal cancer cells: SNU-C5 (KCLB[®] 0000C5, passage number 04 - 17), SW480 (KCLB[®] 10228, passage number 04 - 17) and HCT116 (KCLB[®] 10247, passage number 04 - 17) were obtained from the Korea Cell Line Bank (KCLB; Seoul, Korea). Cell lines purchased from KCLB were analyzed by Short Tandem Repeat (STR) Profiling. HEK293 (ATCC[®] CRL-1658TM, passage number 05 - 15), the human breast carcinoma: MDA-MB 361 (ATCC[®] HTB-27TM, passage number 05 - 15), MDA-MB 231 (ATCC[®] HTB-26TM, passage number 05-15), SK-BR3 (ATCC[®] HTB-30TM, passage number 05-15), osteosarcoma: HOS (ATCC[®] CRL-1543TM, passage number 05 - 15), hepatoma: SNU475 (ATCC[®] CRL-2236TM, passage number 05-15) and mouse fibroblast: NIH3T3 (ATCC[®] CRL-1658TM, passage number 05 - 15) were obtained from the ATCC (Rockville, MA). Cell lines purchased from ATCC (Rockville, MA) were analyzed by STR Profiling.

Supplementary Figure 1. Ectopic expression of dominant negative TCF-4 and depletion of β -catenin decrease PLD1 expression in HCT116. HCT116 cells were transfected with Δ N30 TCF-4 (*left*) or shRNA for β -catenin (*right*). The expression of the proteins was analyzed by Western blot using the indicated antibodies.

Supplementary Figure 2. Schematic diagram for comparison of TBEs on PLD1 promoter regions from various species. TCF-4 binding elements in 5' flanking regions of the human PLD1 transcriptional start site were compared with those of the genomes from 5 different species. A core *motif*, CTTTG(A/T)(A/T) [or the complementary sequence (A/T)(A/T)CAAAG] of TCF binding sequences on PLD1 promoter is highly *conserved* across species.

Supplementary Figure 3. PA rescues the TCF transcriptional activity inhibited by overxpression of GSK3 β or PLD inhibitor. *A*, SW480 cells were co-transfected with TOP/FOP reporters and GSK3 β and then reated with PA (100 μ M), and then luciferase activity was measured. **P* < 0.05 *versus* GSK3 β . *B*, The cells were transfected with TOP/FOP reporters, pretreated with PLD inhibitor (VU0155056: 5 μ M) and then stimulated with PA (100 μ M), and the relative TCF transcriptional activity was determined. The data

represents the mean \pm S.D. of four independent experiments. **P* < 0.05.

Supplementary Figure 4. The effect of PLD1 siRNA on PLD1 expression. Cells were transfected with siRNA for control or PLD1 and PLD1 expression was analyzed by Q-RT-PCR. The data represent the mean \pm S.D. of three independent experiments.

Supplementary Figure 5. PLD1 depletion suppresses Wnt3a-induced cell migration. HEK293 cells were transfected with siRNA for control or PLD1 and then seeded in migration chambers and stimulated with Wnt3a for 24 h. The extent of migration was expressed as an average number of cells per microscopic field. Results represent the mean \pm S.D. of three independent experiments. **P* < 0.05 *versus* vehicle; †*P* < 0.05 *versus* Wnt/control-siRNA.

Supplementary Figure 6. β -catenin-induced anchorage-independent growth is suppressed by inhibitor and depletion of PLD1. NIH3T3 cells were transfected with S37A β -catenin and/or PLD1-siRNA, and suspended in agar matrix and treated with or without VU0155056 (10 μ M). and then, anchorage-independent growth assay was performed. The data represent the mean \pm S.D. of three independent experiments. **P* < 0.05 versus Mock; ***P* < 0.05 versus S37A β -catenin; †*P* < 0.05 versus S37A β -catenin/control-siRNA.

Oligo/plasmid	Position	Seguence (5´ to 3´)	
TBE1			
WT	-797 to -791	CTCTGATGACAGTG TGCAAAG CTTGAATCTC	
MT	-797 to -791	CTCTGATGACAGTG <u>GCT</u> AAAGCTTGAATCTC	
TBE2			
WT	-522 to -516	GGTAATATACACTTTGCTTGGGATATCACCTACAGAG	
MT	-522 to -516	GGTAATATACA CTTT<u>AGC</u>TGGGATATCACCTACAGAG	
TBE3			
WT	-284 to -278	GAATTACTTATCCAAGTT AATAAAGT TGGATGAGAGAAATG	
MT	-278 to -284	GAATTACTTATCCAAGTT	
TBE4			
WT	-25 to -19	CAAAATGCTAAGT CTTTGTA ACCGTTTTCTTCTTCC	
MT	-25 to -19	CAAAATGCTAAGT CTTT<u>AGC</u>ACCGTTTTCTTCTTCC	
	-20 10 - 19		

Supplementary Table 1. Consensus TBE in the PLD1 promoter.

Binding sites : Bold type. Mutations : Underline type

Promoter	Oligo	Direction	Seguence (5' to 3')		
	TBE1	Forward	GCACCCATATCAGGTGCTCCTTAATC		
		Reverse	GCACATCAGTACCCAGGGCAGAAG		
	TBE2	Forward	CACCTCAGATGTCTTTCGGAATAG		
PLD1		Reverse	CACATATTGAAATATATAGATTTAGAAATAT		
	TBE3	Forward	GCTTTCCCAAACCAATCTCCCTTG		
		Reverse	TCAGCCTGCTCTGTGTGAGC		
	TBE4	Forward	GTCTTTGTAACCGTTTTCTTCTTTCCTAG		
		Reverse	GCTCAGATCATCCGTCTTTACC		
NOS2	TBE1	Forward	CAGCCTGGCATAGAAACAGATC		
		Reverse	CAAGGTCACAGCAAACAGCC		
PLD1 Regions : TBE1 (-1024 to -723), TBE2 (-640 to -437), TBE3 (-330 to -101), TBE4 (-64 to +113)					

Supplementary Table 2. Primer sets for Chip assay.

	Primer	Direction	Seguence (5' to 3')
Q-RT-PCR	PLD1	Forward	TGTCGTGATACCACTTCTGCCA
		Reverse	AGCATTTCGAGCTGCTGTTGAA
	с-Мус	Forward	TCC AGCTTGTACCTGCAGGATCTGA
		Reverse	CCTCCAGCAGAAGGTGATCCAGACT
	NOS2	Forward	TGCCAGATGGCAGCATCAGA
		Reverse	TTTCCAGGCCCATTCTCCTGC
	GAPDH	Forward	GTGGTCTCCTCTGACTTCAAC
		Reverse	TCTCTTCCTCTTGTGCTCTTG

Supplementary Table 3. Primer sets for Q-RT-PCR.

