American Association for Cancer Research
Browse

Data from Design and Evaluation of Phosphonamidate-Linked Exatecan Constructs for Highly Loaded, Stable, and Efficacious Antibody–Drug Conjugates

Posted on 2024-02-01 - 08:40
Abstract

Topoisomerase I (TOP1) Inhibitors constitute an emerging payload class to engineer antibody–drug conjugates (ADC) as next-generation biopharmaceutical for cancer treatment. Existing ADCs are using camptothecin payloads with lower potency and suffer from limited stability in circulation. With this study, we introduce a novel camptothecin-based linker–payload platform based on the highly potent camptothecin derivative exatecan. First, we describe general challenges that arise from the hydrophobic combination of exatecan and established dipeptidyl p-aminobenzyl-carbamate (PAB) cleavage sites such as reduced antibody conjugation yields and ADC aggregation. After evaluating several linker–payload structures, we identified ethynyl-phosphonamidates in combination with a discrete PEG24 chain to compensate for the hydrophobic PAB–exatecan moiety. Furthermore, we demonstrate that the identified linker–payload structure enables the construction of highly loaded DAR8 ADCs with excellent solubility properties. Head-to-head comparison with Enhertu, an approved camptothecin-based ADC, revealed improved target-mediated killing of tumor cells, excellent bystander killing, drastically improved linker stability in vitro and in vivo and superior in vivo efficacy over four tested dose levels in a xenograft model. Moreover, we show that ADCs based on the novel exatecan linker–payload platform exhibit antibody-like pharmacokinetic properties, even when the ADCs are highly loaded with eight drug molecules per antibody. This ADC platform constitutes a new and general solution to deliver TOP1 inhibitors with highest efficiency to the site of the tumor, independent of the antibody and its target, and is thereby broadly applicable to various cancer indications.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

FUNDING

Tubulis GmbH

SHARE

email

Usage metrics

Molecular Cancer Therapeutics

AUTHORS (13)

Saskia Schmitt
Paul Machui
Isabelle Mai
Sarah Herterich
Swetlana Wunder
Philipp Cyprys
Marcus Gerlach
Philipp Ochtrop
Christian P.R. Hackenberger
Dominik Schumacher
Jonas Helma
Annette M. Vogl
Marc-André Kasper
need help?