American Association for Cancer Research
21598290cd170603-sup-184060_2_supp_4515521_p2sszq.avi (572.47 kB)

Supplementary Video S3 from E-Cadherin/ROS1 Inhibitor Synthetic Lethality in Breast Cancer

Download (572.47 kB)
posted on 2023-04-03, 21:43 authored by Ilirjana Bajrami, Rebecca Marlow, Marieke van de Ven, Rachel Brough, Helen N. Pemberton, Jessica Frankum, Feifei Song, Rumana Rafiq, Asha Konde, Dragomir B. Krastev, Malini Menon, James Campbell, Aditi Gulati, Rahul Kumar, Stephen J. Pettitt, Mark D. Gurden, Marta Llorca Cardenosa, Irene Chong, Patrycja Gazinska, Fredrik Wallberg, Elinor J. Sawyer, Lesley-Ann Martin, Mitch Dowsett, Spiros Linardopoulos, Rachael Natrajan, Colm J. Ryan, Patrick W.B. Derksen, Jos Jonkers, Andrew N.J. Tutt, Alan Ashworth, Christopher J. Lord

Lagging chromosomes in E-cadherin defective cell exposed to foretinib leading to failed cytokinesis


Breast Cancer Now



Carlos III Health Institute

Science Foundation Ireland

Health Research Board

Wellcome Trust




The cell adhesion glycoprotein E-cadherin (CDH1) is commonly inactivated in breast tumors. Precision medicine approaches that exploit this characteristic are not available. Using perturbation screens in breast tumor cells with CRISPR/Cas9-engineered CDH1 mutations, we identified synthetic lethality between E-cadherin deficiency and inhibition of the tyrosine kinase ROS1. Data from large-scale genetic screens in molecularly diverse breast tumor cell lines established that the E-cadherin/ROS1 synthetic lethality was not only robust in the face of considerable molecular heterogeneity but was also elicited with clinical ROS1 inhibitors, including foretinib and crizotinib. ROS1 inhibitors induced mitotic abnormalities and multinucleation in E-cadherin–defective cells, phenotypes associated with a defect in cytokinesis and aberrant p120 catenin phosphorylation and localization. In vivo, ROS1 inhibitors produced profound antitumor effects in multiple models of E-cadherin–defective breast cancer. These data therefore provide the preclinical rationale for assessing ROS1 inhibitors, such as the licensed drug crizotinib, in appropriately stratified patients.Significance: E-cadherin defects are common in breast cancer but are currently not targeted with a precision medicine approach. Our preclinical data indicate that licensed ROS1 inhibitors, including crizotinib, should be repurposed to target E-cadherin–defective breast cancers, thus providing the rationale for the assessment of these agents in molecularly stratified phase II clinical trials. Cancer Discov; 8(4); 498–515. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 371