American Association for Cancer Research
Browse
- No file added yet -

Supplementary Movie 3 from Individual Motile CD4+ T Cells Can Participate in Efficient Multikilling through Conjugation to Multiple Tumor Cells

Download (997.17 kB)
media
posted on 2023-04-03, 23:07 authored by Ivan Liadi, Harjeet Singh, Gabrielle Romain, Nicolas Rey-Villamizar, Amine Merouane, Jay R T. Adolacion, Partow Kebriaei, Helen Huls, Peng Qiu, Badrinath Roysam, Laurence J.N. Cooper, Navin Varadarajan

Movie M3. Representative example of a CAR8 cell from the S3 subgroup.

History

ARTICLE ABSTRACT

T cells genetically modified to express a CD19-specific chimeric antigen receptor (CAR) for the investigational treatment of B-cell malignancies comprise a heterogeneous population, and their ability to persist and participate in serial killing of tumor cells is a predictor of therapeutic success. We implemented Timelapse Imaging Microscopy in Nanowell Grids (TIMING) to provide direct evidence that CD4+CAR+ T cells (CAR4 cells) can engage in multikilling via simultaneous conjugation to multiple tumor cells. Comparisons of the CAR4 cells and CD8+CAR+ T cells (CAR8 cells) demonstrate that, although CAR4 cells can participate in killing and multikilling, they do so at slower rates, likely due to the lower granzyme B content. Significantly, in both sets of T cells, a minor subpopulation of individual T cells identified by their high motility demonstrated efficient killing of single tumor cells. A comparison of the multikiller and single-killer CAR+ T cells revealed that the propensity and kinetics of T-cell apoptosis were modulated by the number of functional conjugations. T cells underwent rapid apoptosis, and at higher frequencies, when conjugated to single tumor cells in isolation, and this effect was more pronounced on CAR8 cells. Our results suggest that the ability of CAR+ T cells to participate in multikilling should be evaluated in the context of their ability to resist activation-induced cell death. We anticipate that TIMING may be used to rapidly determine the potency of T-cell populations and may facilitate the design and manufacture of next-generation CAR+ T cells with improved efficacy. Cancer Immunol Res; 3(5); 473–82. ©2015 AACR.See related commentary by June, p. 470

Usage metrics

    Cancer Immunology Research

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC