Table S1 from Phosphoinositide 3-Kinase Inhibitors Combined with Imatinib in Patient-Derived Xenograft Models of Gastrointestinal Stromal Tumors: Rationale and Efficacy
journal contribution
posted on 2023-03-31, 18:04 authored by Thomas Van Looy, Agnieszka Wozniak, Giuseppe Floris, Raf Sciot, Haifu Li, Jasmien Wellens, Ulla Vanleeuw, Jonathan A. Fletcher, Paul W. Manley, Maria Debiec-Rychter, Patrick SchöffskiTable S1. Study design
History
ARTICLE ABSTRACT
Introduction: The PI3K signaling pathway drives tumor cell proliferation and survival in gastrointestinal stromal tumor (GIST). We tested the in vivo efficacy of three PI3K inhibitors (PI3Ki) in patient-derived GIST xenograft models.Experimental Design: One hundred and sixty-eight nude mice were grafted with human GIST carrying diverse KIT genotypes and PTEN genomic status. Animals were dosed orally for two weeks as follows: control group (untreated); imatinib (IMA); PI3Ki (BKM120—buparlisib, BEZ235, or BYL719) or combinations of imatinib with a PI3Ki. Western blotting, histopathology, and tumor volume evolution were used for the assessment of treatment efficacy. Furthermore, tumor regrowth was evaluated for three weeks after treatment cessation.Results: PI3Ki monotherapy showed a significant antitumor effect, reflected in tumor volume reduction or stabilization, inhibitory effects on mitotic activity, and PI3K signaling inhibition. The IMA+PI3Ki combination remarkably improved the efficacy of either single-agent treatment with more pronounced tumor volume reduction and enhanced proapoptotic effects over either single agent. Response to IMA+PI3Ki was found to depend on the KIT genotype and specific model-related molecular characteristics.Conclusion: IMA+PI3Ki has significant antitumor efficacy in GIST xenografts as compared with single-agent treatment, resulting in more prominent tumor volume reduction and enhanced induction of apoptosis. Categorization of GIST based on KIT genotype and PI3K/PTEN genomic status combined with dose optimization is suggested for patient selection for clinical trials exploring such combinations. Clin Cancer Res; 20(23); 6071–82. ©2014 AACR.Usage metrics
Keywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC