American Association for Cancer Research
10780432ccr173705-sup-193883_2_supp_4740402_p8dmc4.pdf (73.26 kB)

Table S1 from Copper Chelation as Targeted Therapy in a Mouse Model of Oncogenic BRAF-Driven Papillary Thyroid Cancer

Download (73.26 kB)
journal contribution
posted on 2023-03-31, 20:45 authored by MengMeng Xu, Michael Casio, Danielle E. Range, Julie A. Sosa, Christopher M. Counter

Drug concentrations corresponding to each effective concentration



Lymphoma Foundation



Purpose: Sixty percent of papillary thyroid cancers (PTC) have an oncogenic (V600E) BRAF mutation. Inhibitors of BRAF and its substrates MEK1/2 are showing clinical promise in BRAFV600E PTC. PTC progression can be decades long, which is challenging in terms of toxicity and cost. We previously found that MEK1/2 require copper (Cu) for kinase activity and can be inhibited with the well-tolerated and economical Cu chelator tetrathiomolybdate (TM). We therefore tested TM for antineoplastic activity in BRAFV600E-positive PTC.Experimental Design: The efficacy of TM alone and in combination with current standard-of-care lenvatinib and sorafenib or BRAF and MEK1/2 inhibitors vemurafenib and trametinib was examined in BRAFV600E-positive human PTC cell lines and a genetically engineered mouse PTC model.Results: TM inhibited MEK1/2 kinase activity and transformed growth of PTC cells. TM was as or more potent than lenvatinib and sorafenib and enhanced the antineoplastic activity of sorafenib and vemurafenib. Activated ERK2, a substrate of MEK1/2, overcame this effect, consistent with TM deriving its antineoplastic activity by inhibiting MEK1/2. Oral TM reduced tumor burden and vemurafenib in a BrafV600E-positive mouse model of PTC. This effect was ascribed to a reduction of Cu in the tumors. TM reduced P-Erk1/2 in mouse PTC tumors, whereas genetic reduction of Cu in developing tumors trended towards a survival advantage. Finally, TM as a maintenance therapy after cessation of vemurafenib reduced tumor volume in the aforementioned PTC mouse model.Conclusions: TM inhibits BRAFV600E-driven PTC through inhibition of MEK1/2, supporting clinical evaluation of chronic TM therapy for this disease. Clin Cancer Res; 24(17); 4271–81. ©2018 AACR.