American Association for Cancer Research
Browse
00085472can161627-sup-167711_3_unknown_upload_4022803_spjnxp.docx (77.78 kB)

Table S1 from A Genome-Wide CRISPR Screen Identifies Genes Critical for Resistance to FLT3 Inhibitor AC220

Download (77.78 kB)
journal contribution
posted on 2023-03-31, 01:00 authored by Panpan Hou, Chao Wu, Yuchen Wang, Rui Qi, Dheeraj Bhavanasi, Zhixiang Zuo, Cedric Dos Santos, Shuliang Chen, Yu Chen, Hong Zheng, Hong Wang, Alexander Perl, Deyin Guo, Jian Huang

Supplementary Table 1. The summary of the top hits identified in the screen (recovered sgRNA>3). The number of sgRNAs recovered and the average copy number of sgRNAs for each gene are shown in the table.

Funding

NHLBI

History

ARTICLE ABSTRACT

Acute myeloid leukemia (AML) is a malignant hematopoietic disease and the most common type of acute leukemia in adults. The mechanisms underlying drug resistance in AML are poorly understood. Activating mutations in FMS-like tyrosine kinase 3 (FLT3) are the most common molecular abnormality in AML. Quizartinib (AC220) is a potent and selective second-generation inhibitor of FLT3. It is in clinical trials for the treatment of relapsed or refractory FLT3-ITD–positive and –negative AML patients and as maintenance therapy. To understand the mechanisms of drug resistance to AC220, we undertook an unbiased approach with a novel CRISPR-pooled library to screen new genes whose loss of function confers resistance to AC220. We identified SPRY3, an intracellular inhibitor of FGF signaling, and GSK3, a canonical Wnt signaling antagonist, and demonstrated reactivation of downstream FGF/Ras/ERK and Wnt signaling as major mechanisms of resistance to AC220. We confirmed these findings in primary AML patient samples. Expression of SPRY3 and GSK3A was dramatically reduced in AC220-resistant AML samples, and SPRY3-deleted primary AML cells were resistant to AC220. Intriguingly, expression of SPRY3 was greatly reduced in GSK3 knockout AML cells, which positioned SPRY3 downstream of GSK3 in the resistance pathway. Taken together, our study identified novel genes whose loss of function conferred resistance to a selective FLT3 inhibitor, providing new insight into signaling pathways that contribute to acquired resistance in AML. Cancer Res; 77(16); 4402–13. ©2017 AACR.

Usage metrics

    Cancer Research

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC