American Association for Cancer Research
Browse
00085472can162253-sup-170200_3_supp_4217405_zzs4fz.pdf (2.62 MB)

Supplementary Tables S1-S7 from miR-193b–Regulated Signaling Networks Serve as Tumor Suppressors in Liposarcoma and Promote Adipogenesis in Adipose-Derived Stem Cells

Download (2.62 MB)
journal contribution
posted on 2023-03-31, 01:45 authored by Ying Z. Mazzu, Yulan Hu, Rajesh K. Soni, Kelly M. Mojica, Li-Xuan Qin, Phaedra Agius, Zachary M. Waxman, Aleksandra Mihailovic, Nicholas D. Socci, Ronald C. Hendrickson, Thomas Tuschl, Samuel Singer

Table S1: Clinicopathologic characteristics of 238 patients with liposarcoma. Table S2: Sources of reagents: antibodies, miRNAs, siRNAs, and inhibitors. Table S3: Primers for MSP, qRT-PCR, and cloning of gene 3'UTR reporters. Table S4: Top 50 differentially expressed miRNAs in DDLS versus normal fat tissues. Table S5: Microarray and SILAC analysis in miRNA-treated liposarcoma cells. Table S6: Identification of miR-193b-targets by integration of transcriptomics, proteomics, and miR-target prediction methods. Table S7: DAVID gene ontology analysis of miR-193b targets.

Funding

NIH

NCI

History

ARTICLE ABSTRACT

Well-differentiated and dedifferentiated liposarcomas (WDLS/DDLS) account for approximately 13% of all soft tissue sarcoma in adults and cause substantial morbidity or mortality in the majority of patients. In this study, we evaluated the functions of miRNA (miR-193b) in liposarcoma in vitro and in vivo. Deep RNA sequencing on 93 WDLS, 145 DDLS, and 12 normal fat samples demonstrated that miR-193b was significantly underexpressed in DDLS compared with normal fat. Reintroduction of miR-193b induced apoptosis in liposarcoma cells and promoted adipogenesis in human adipose-derived stem cells (ASC). Integrative transcriptomic and proteomic analysis of miR-193b–target networks identified novel direct targets, including CRK-like proto-oncogene (CRKL) and focal adhesion kinase (FAK). miR-193b was found to regulate FAK–SRC–CRKL signaling through CRKL and FAK. miR-193b also stimulated reactive oxygen species signaling by targeting the antioxidant methionine sulfoxide reductase A to modulate liposarcoma cell survival and ASC differentiation state. Expression of miR-193b in liposarcoma cells was downregulated by promoter methylation, resulting at least in part from increased expression of the DNA methyltransferase DNMT1 in WDLS/DDLS. In vivo, miR-193b mimetics and FAK inhibitor (PF-562271) each inhibited liposarcoma xenograft growth. In summary, miR-193b not only functions as a tumor suppressor in liposarcoma but also promotes adipogenesis in ASC. Furthermore, this study reveals key tyrosine kinase and DNA methylation pathways in liposarcoma, some with immediate implications for therapeutic exploration. Cancer Res; 77(21); 5728–40. ©2017 AACR.