American Association for Cancer Research
00085472can160140-sup-160928_2_supp_3508792_z7zf7t.docx (20.84 kB)

Supplementary Tables 1 through 4 from miR-9 and miR-200 Regulate PDGFRβ-Mediated Endothelial Differentiation of Tumor Cells in Triple-Negative Breast Cancer

Download (20.84 kB)
journal contribution
posted on 2023-03-31, 00:29 authored by Elvira D'Ippolito, Ilaria Plantamura, Lucia Bongiovanni, Patrizia Casalini, Sara Baroni, Claudia Piovan, Rosaria Orlandi, Ambra V. Gualeni, Annunziata Gloghini, Anna Rossini, Sara Cresta, Anna Tessari, Filippo De Braud, Gianpiero Di Leva, Claudio Tripodo, Marilena V. Iorio

The file contains all the supplementary tables (S1-S4): - Supplementary Table S1. Clinicopathologic features of 78 breast cancer patients (set 1) and 85 TNBC (set 2). - Supplementary Table S2. Relation between miR-9 expression and clinicopathologic characteristics in human breast cancer. - Supplementary Table S3. Top 40 genes predicted as miR-9 target and statistically significant down-modulated in basal versus luminal breast cancer. - Supplementary Table S4. Relation between clinicopathologic characteristics and miR-9 and miR-200c in TNBC human tissues.



Italian Ministry of Health



Organization of cancer cells into endothelial-like cell-lined structures to support neovascularization and to fuel solid tumors is a hallmark of progression and poor outcome. In triple-negative breast cancer (TNBC), PDGFRβ has been identified as a key player of this process and is considered a promising target for breast cancer therapy. Thus, we aimed at investigating the role of miRNAs as a therapeutic approach to inhibit PDGFRβ-mediated vasculogenic properties of TNBC, focusing on miR-9 and miR-200. In MDA-MB-231 and MDA-MB-157 TNBC cell lines, miR-9 and miR-200 promoted and inhibited, respectively, the formation of vascular-like structures in vitro. Induction of endogenous miR-9 expression, upon ligand-dependent stimulation of PDGFRβ signaling, promoted significant vascular sprouting of TNBC cells, in part, by direct repression of STARD13. Conversely, ectopic expression of miR-200 inhibited this sprouting by indirectly reducing the protein levels of PDGFRβ through the direct suppression of ZEB1. Notably, in vivo miR-9 inhibition or miR-200c restoration, through either the generation of MDA-MB-231–stable clones or peritumoral delivery in MDA-MB-231 xenografted mice, strongly decreased the number of vascular lacunae. Finally, IHC and immunofluorescence analyses in TNBC specimens indicated that PDGFRβ expression marked tumor cells engaged in vascular lacunae. In conclusion, our results demonstrate that miR-9 and miR-200 play opposite roles in the regulation of the vasculogenic ability of TNBC, acting as facilitator and suppressor of PDGFRβ, respectively. Moreover, our data support the possibility to therapeutically exploit miR-9 and miR-200 to inhibit the process of vascular lacunae formation in TNBC. Cancer Res; 76(18); 5562–72. ©2016 AACR.

Usage metrics

    Cancer Research




    Ref. manager