Supporting Information, Table 2: Correlation between p63, known basal-like and luminal markers and Triple Negative Tumour (TNT) Status from publically available gene expression datasets.

	# of samples in dataset		Difference between Triple negative and non triple negative samples in expression of -								
	TNT	Other	p63	CD44	p-cad	KRT5	FOXC1	c-kit	Gata3	KRT8	Ref
Schuetz et al	2	12	none	Higher in TNT	Higher in TNT	Higher in TNT	Higher in TNT	none	Lower in TNT	None	(1)
Bittner et al	45	163	none	none	none	Marginal higher in TNT	Higher in TNT	Higher in TNT	Lower in TNT	Marginal lower in TNT	(2)
Hess et al	27	102	none	none	Higher in TNT	Higher in TNT	n/a	Higher in TNT	Lower in TNT	Lower in TNT	(3)
Zhao et al	5	37	Higher in "other"	Marginal higher in TNT	Higher in some reporter in TNT	n/a	Higher in TNT	Marginal higher in TNT	Lower in TNT	Marginal lower in TNT	(4)
Bonnefoi et al	89	35	none	none	Marginal higher in TNT	Higher In TNT	Higher in TNT	Marginal higher in TNT	Lower in TNT	Lower in TNT	(5)
Turashvili et al	3	7	none	Higher by most reporter in TNT	Higher by some reporter in TNT	Higher in TNT	Marginal higher in TNT	None	Lower in TNT	Marginal lower in TNT	(6)
Richardson et al	18	19	none	Higher by most reporter in TNT	Higher by some reporter in TNT	Higher in TNT	Higher in TNT	Higher in TNT	Lower in TNT	Lower in TNT	(7)
Chang et al	5	19	none	none	none	none	n/a	none	Lower in TNT	n/a	(8)
Bild et al	10	130	none	none	Marginal higher in TNT	none	n/a	Marginal higher in TNT	Lower in TNT	n/a	(9)
Julka et al	9	34	none	none	Higher in TNT	none	none	Higher in TNT	Lower in TNT	Marginal lower in TNT	(10)
Neve et al (cell lines)	24	25	none	Higher in TNT	none	Higher in TNT	n/a	none	Lower in TNT	Lower in TNT	(11)
Chin et al	19	59	none	none	Higher in TNT	Higher in TNT	n/a	Higher in TNT	Lower in TNT	Lower inTNT	(12)
Minn et al	25	63	none	none	Higher in TNT	Higher in TNT	n/a	none	Lower in TNT	Lower in TNT	(13)

- 1. Schuetz, C. S., Bonin, M., Clare, S. E., et al. Progression-specific genes identified by expression profiling of matched ductal carcinomas in situ and invasive breast tumors, combining laser capture microdissection and oligonucleotide microarray analysis. Cancer Res 2006;66:5278-5286.
- 2. Bittner, M. Not published. Data available through Oncomine., 2005.
- 3. Hess, K. R., Anderson, K., Symmans, W. F., et al. Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer. J Clin Oncol 2006;24:4236-4244.
- 4. Zhao, H., Langerod, A., Ji, Y., et al. Different gene expression patterns in invasive lobular and ductal carcinomas of the breast. Mol Biol Cell 2004:15:2523-2536.
- 5. Bonnefoi, H., Potti, A., Delorenzi, M., et al. Validation of gene signatures that predict the response of breast cancer to neoadjuvant chemotherapy: a substudy of the EORTC 10994/BIG 00-01 clinical trial. Lancet Oncol 2007;8:1071-1078.
- 6. Turashvili, G., Bouchal, J., Baumforth, K., et al. Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. BMC Cancer 2007;7:55.
- 7. Richardson, A. L., Wang, Z. C., De Nicolo, A., et al. X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 2006;9:121-132.
- 8. Chang, J. C., Wooten, E. C., Tsimelzon, A., et al. Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet 2003;362:362-369.
- 9. Bild, A. H., Yao, G., Chang, J. T., et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 2006;439:353-357.
- 10. Julka, P. K., Chacko, R. T., Nag, S., et al. A phase II study of sequential neoadjuvant gemcitabine plus doxorubicin followed by gemcitabine plus cisplatin in patients with operable breast cancer: prediction of response using molecular profiling. Br J Cancer 2008;98:1327-1335.
- 11. Neve, R. M., Chin, K., Fridlyand, J., et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006;10:515-527.
- 12. Chin, K., DeVries, S., Fridlyand, J., et al. Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 2006;10:529-541.
- 13. Minn, A. J., Gupta, G. P., Siegel, P. M., et al. Genes that mediate breast cancer metastasis to lung. Nature 2005;436:518-524.