posted on 2023-04-04, 01:01authored byJulie E. Feusier, Sasi Arunachalam, Tsewang Tashi, Monika J. Baker, Chad VanSant-Webb, Amber Ferdig, Bryan E. Welm, Juan L. Rodriguez-Flores, Christopher Ours, Lynn B. Jorde, Josef T. Prchal, Clinton C. Mason
Hotspots difficult to confidently assess for CHIP
Funding
NCATS
NIH
U.S. Department of Defense
History
ARTICLE ABSTRACT
Clonal hematopoiesis of indeterminate potential (CHIP) is characterized by detectable hematopoietic-associated gene mutations in a person without evidence of hematologic malignancy. We sought to identify additional cancer-presenting mutations usable for CHIP detection by performing a data mining analysis of 48 somatic mutation landscape studies reporting mutations at diagnoses of 7,430 adult and pediatric patients with leukemia or other hematologic malignancy. Following extraction of 20,141 protein-altering mutations, we identified 434 significantly recurrent mutation hotspots, 364 of which occurred at loci confidently assessable for CHIP. We then performed an additional large-scale analysis of whole-exome sequencing data from 4,538 persons belonging to three noncancer cohorts for clonal mutations. We found the combined cohort prevalence of CHIP with mutations identical to those reported at blood cancer mutation hotspots to be 1.8%, and that some of these CHIP mutations occurred in children. Our findings may help to improve CHIP detection and precancer surveillance for both children and adults.
This study identifies frequently occurring mutations across several blood cancers that may drive hematologic malignancies and signal increased risk for cancer when detected in healthy persons. We find clonal mutations at these hotspots in a substantial number of individuals from noncancer cohorts, including children, showcasing potential for improved precancer surveillance.See related commentary by Spitzer and Levine, p. 192.