American Association for Cancer Research
Browse
- No file added yet -

Supplementary Table 6 from Phosphoproteomic Screen Identifies Potential Therapeutic Targets in Melanoma

Download (255.98 kB)
journal contribution
posted on 2023-04-03, 18:06 authored by Kathryn Tworkoski, Garima Singhal, Sebastian Szpakowski, Christina Ivins Zito, Antonella Bacchiocchi, Viswanathan Muthusamy, Marcus Bosenberg, Michael Krauthammer, Ruth Halaban, David F. Stern
Supplementary Table 6 from Phosphoproteomic Screen Identifies Potential Therapeutic Targets in Melanoma

History

ARTICLE ABSTRACT

Therapies directed against receptor tyrosine kinases are effective in many cancer subtypes, including lung and breast cancer. We used a phosphoproteomic platform to identify active receptor tyrosine kinases that might represent therapeutic targets in a panel of 25 melanoma cell strains. We detected activated receptors including TYRO3, AXL, MERTK, EPHB2, MET, IGF1R, EGFR, KIT, HER3, and HER4. Statistical analysis of receptor tyrosine kinase activation as well as ligand and receptor expression indicates that some receptors, such as FGFR3, may be activated via autocrine circuits. Short hairpin RNA knockdown targeting three of the active kinases identified in the screen, AXL, HER3, and IGF1R, inhibited the proliferation of melanoma cells and knockdown of active AXL also reduced melanoma cell migration. The changes in cellular phenotype observed on AXL knockdown seem to be modulated via the STAT3 signaling pathway, whereas the IGF1R-dependent alterations seem to be regulated by the AKT signaling pathway. Ultimately, this study identifies several novel targets for therapeutic intervention in melanoma. Mol Cancer Res; 9(6); 801–12. ©2011 AACR.

Usage metrics

    Molecular Cancer Research

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC