American Association for Cancer Research
Browse
- No file added yet -

Supplementary Table 1 from Allogeneic Human Double Negative T Cells as a Novel Immunotherapy for Acute Myeloid Leukemia and Its Underlying Mechanisms

Download (112.66 kB)
journal contribution
posted on 2023-03-31, 20:01 authored by JongBok Lee, Mark D. Minden, Weihsu C. Chen, Elena Streck, Branson Chen, Hyeonjeong Kang, Andrea Arruda, Dalam Ly, Sandy D. Der, Sohyeong Kang, Paulina Achita, Cheryl D'Souza, Yueyang Li, Richard W. Childs, John E. Dick, Li Zhang

Table S1. Clinical information of the 46 AML patients who provided AML cells for in vitro or in vivo assays.

Funding

Leukemia and Lymphoma Society

Canadian Cancer Society

Canadian Institutes of Health Research

History

ARTICLE ABSTRACT

Purpose: To explore the potential of ex vivo expanded healthy donor–derived allogeneic CD4 and CD8 double-negative cells (DNT) as a novel cellular immunotherapy for leukemia patients.Experimental Design: Clinical-grade DNTs from peripheral blood of healthy donors were expanded and their antileukemic activity and safety were examined using flow cytometry–based in vitro killing assays and xenograft models against AML patient blasts and healthy donor–derived hematopoietic cells. Mechanism of action was investigated using antibody-mediated blocking assays and recombinant protein treatment assays.Results: Expanded DNTs from healthy donors target a majority (36/46) of primary AML cells, including 9 chemotherapy-resistant patient samples in vitro, and significantly reduce the leukemia load in patient-derived xenograft models in a DNT donor–unrestricted manner. Importantly, allogeneic DNTs do not attack normal hematopoietic cells or affect hematopoietic stem/progenitor cell engraftment and differentiation, or cause xenogeneic GVHD in recipients. Mechanistically, DNTs express high levels of NKG2D and DNAM-1 that bind to cognate ligands preferentially expressed on AML cells. Upon recognition of AML cells, DNTs rapidly release IFNγ, which further increases NKG2D and DNAM-1 ligands’ expression on AML cells. IFNγ pretreatment enhances the susceptibility of AML cells to DNT-mediated cytotoxicity, including primary AML samples that are otherwise resistant to DNTs, and the effect of IFNγ treatment is abrogated by NKG2D and DNAM-1–blocking antibodies.Conclusions: This study supports healthy donor–derived allogeneic DNTs as a therapy to treat patients with chemotherapy-resistant AML and also reveals interrelated roles of NKG2D, DNAM-1, and IFNγ in selective targeting of AML by DNTs. Clin Cancer Res; 24(2); 370–82. ©2017 AACR.

Usage metrics

    Clinical Cancer Research

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC