Supplementary Methods

N-methylated triflate derivatives of 4,6-bis-(6-(acrid-9-yl)-pyridin-2-yl)-pyrimidine or

 TAC were synthesized from bisacridine 4,6-bis-(6-(acrid-9-yl)-pyridin-2-yl)-pyrimidine ${ }^{18}$ by adding $20 \mu \mathrm{~L}$ of methyltrifluoromethanesulfonate under argon to 39 mg of bisacridine 4,6 -bis-(6-(acrid-9-yl)-pyridin-2-yl)-pyrimidine ($5 \times 10^{-5} \mathrm{~mol}$) solubilized in 25 mL of hot dry $1,2-$ dichloroethane (US Patent 20080119492). The yellow solution was refluxed for 4 hours, and, after addition of $5 \mu \mathrm{~L}$ of methyltrifluoromethanesulfonate, was further heated for 2 hours. After the solution was allowed to cool to room temperature, the yellow precipitate was filtered and washed twice with diethylether (2 mL) and dried in vacuo to yield 45 mg of a bright yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $9.75\left(\mathrm{~s}, 1 \mathrm{H}\right.$, tris), $9.05\left(\mathrm{~s}, 1 \mathrm{H}\right.$, tris), $8.98\left(\mathrm{~d},{ }^{3} J\right.$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, tris $), 8.74(\mathrm{~s}, 1 \mathrm{H}$, bis $), 8.62\left(\mathrm{~d},{ }^{3} J=9 \mathrm{~Hz}, 2 \mathrm{H}\right.$, tris $), 8.57\left(\mathrm{~d},{ }^{3} J=9 \mathrm{~Hz}, 2 \mathrm{H}\right.$, tris), 8.53 (d, ${ }^{3} J=9 \mathrm{~Hz}, 4 \mathrm{H}$, bis), $8.48\left(\mathrm{~s}, 1 \mathrm{H}\right.$, bis), $8.45\left(\mathrm{t},{ }^{3} \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, tris), $8.42\left(\mathrm{t},{ }^{3} J=8 \mathrm{~Hz}\right.$, 1 H , tris), 8.2-8.3 (m, 5 H from tris, 4 H from bis), 8.0 (d, ${ }^{3} J=7 \mathrm{~Hz}, 2 \mathrm{H}$, tris), 7.9 (d, ${ }^{3} J=8 \mathrm{~Hz}$, 2 H, tris), 7.81 ($\mathrm{d},{ }^{3} \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}$, tris), $7.6-7.8(\mathrm{~m}, 2 \mathrm{H}$ from bis, 4 H from tris), 7.2-7.4 (m, 8 H , bis), $4.89\left(\mathrm{~s}, 3 \mathrm{H}\right.$, tris), $7.03\left(\mathrm{t},{ }^{3} \mathrm{~J}=8 \mathrm{~Hz}, 4 \mathrm{H}\right.$, bis), $4.86(\mathrm{~s}, 6 \mathrm{H}, \mathrm{bis}), 4.84(\mathrm{~s}, 3 \mathrm{H}$, tris), $4.37(\mathrm{~s}$, $3 H$, tris).