American Association for Cancer Research
Browse

Supplementary Methods from Novel Chemical Enhancers of Heat Shock Increase Thermal Radiosensitization through a Mitotic Catastrophe Pathway

Download (19.38 kB)
journal contribution
posted on 2023-03-30, 17:05 authored by Konjeti R. Sekhar, Vijayakumar N. Sonar, Venkatraj Muthusamy, Soumya Sasi, Andrei Laszlo, Jamil Sawani, Nobuo Horikoshi, Ryuji Higashikubo, Robert G. Bristow, Michael J. Borrelli, Peter A. Crooks, James R. Lepock, Joseph L. Roti Roti, Michael L. Freeman
Supplementary Methods from Novel Chemical Enhancers of Heat Shock Increase Thermal Radiosensitization through a Mitotic Catastrophe Pathway

History

ARTICLE ABSTRACT

Radiation therapy combined with adjuvant hyperthermia has the potential to provide outstanding local-regional control for refractory disease. However, achieving therapeutic thermal dose can be problematic. In the current investigation, we used a chemistry-driven approach with the goal of designing and synthesizing novel small molecules that could function as thermal radiosensitizers. (Z)-(±)-2-(1-Benzenesulfonylindol-3-ylmethylene)-1-azabicyclo[2.2.2]octan-3-ol was identified as a compound that could lower the threshold for Hsf1 activation and thermal sensitivity. Enhanced thermal sensitivity was associated with significant thermal radiosensitization. We established the structural requirements for activity: the presence of an N-benzenesulfonylindole or N-benzylindole moiety linked at the indolic 3-position to a 2-(1-azabicyclo[2.2.2]octan-3-ol) or 2-(1-azabicyclo[2.2.2]octan-3-one) moiety. These small molecules functioned by exploiting the underlying biophysical events responsible for thermal sensitization. Thermal radiosensitization was characterized biochemically and found to include loss of mitochondrial membrane potential, followed by mitotic catastrophe. These studies identified a novel series of small molecules that represent a promising tool for the treatment of recurrent tumors by ionizing radiation. [Cancer Res 2007;67(2):695–701]

Usage metrics

    Cancer Research

    Categories

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC