American Association for Cancer Research
Browse

Supplementary Methods, Figures 1-7 from Epratuzumab–SN-38: A New Antibody–Drug Conjugate for the Therapy of Hematologic Malignancies

Download (860.54 kB)
journal contribution
posted on 2023-04-03, 13:51 authored by Robert M. Sharkey, Serengulam V. Govindan, Thomas M. Cardillo, David M. Goldenberg

PDF file - 860K

History

ARTICLE ABSTRACT

We previously found that slowly internalizing antibodies conjugated with SN-38 could be used successfully when prepared with a linker that allows approximately 50% of the IgG-bound SN-38 to dissociate in serum every 24 hours. In this study, the efficacy of SN-38 conjugates prepared with epratuzumab (rapidly internalizing) and veltuzumab (slowly internalizing), humanized anti-CD22 and anti-CD20 IgG, respectively, was examined for the treatment of B-cell malignancies. Both antibody–drug conjugates had similar nanomolar activity against a variety of human lymphoma/leukemia cell lines, but slow release of SN-38 compromised potency discrimination in vitro even against an irrelevant conjugate. When SN-38 was stably linked to the anti-CD22 conjugate, its potency was reduced 40- to 55-fold. Therefore, further studies were conducted only with the less stable, slowly dissociating linker. In vivo, similar antitumor activity was found between CD22 and CD20 antibody–drug conjugate in mice-bearing Ramos xenografts, even though Ramos expressed 15-fold more CD20 than CD22, suggesting that the internalization of the epratuzumab–SN-38 conjugate (Emab–SN-38) enhanced its activity. Emab–SN-38 was more efficacious than a nonbinding, irrelevant IgG–SN-38 conjugate in vivo, eliminating a majority of well-established Ramos xenografts at nontoxic doses. In vitro and in vivo studies showed that Emab–SN-38 could be combined with unconjugated veltuzumab for a more effective treatment. Thus, Emab–SN-38 is active in lymphoma and leukemia at doses well below toxic levels and therefore represents a new promising agent with therapeutic potential alone or combined with anti-CD20 antibody therapy. Mol Cancer Ther; 11(1); 224–34. ©2011 AACR.

Usage metrics

    Molecular Cancer Therapeutics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC