American Association for Cancer Research
15357163mct200071-sup-236463_2_supp_6418598_qd8gh8.pdf (49.83 MB)

Supplementary Figures from Amivantamab (JNJ-61186372), an Fc Enhanced EGFR/cMet Bispecific Antibody, Induces Receptor Downmodulation and Antitumor Activity by Monocyte/Macrophage Trogocytosis

Download (49.83 MB)
journal contribution
posted on 2023-04-03, 18:04 authored by Smruthi Vijayaraghavan, Lorraine Lipfert, Kristen Chevalier, Barbara S. Bushey, Benjamin Henley, Ryan Lenhart, Jocelyn Sendecki, Marilda Beqiri, Hillary J. Millar, Kathryn Packman, Matthew V. Lorenzi, Sylvie Laquerre, Sheri L. Moores

Contains supp figures S1-S13 and the corresponding figure legends


Janssen Research & Development, LLC



Small molecule inhibitors targeting mutant EGFR are standard of care in non–small cell lung cancer (NSCLC), but acquired resistance invariably develops through mutations in EGFR or through activation of compensatory pathways such as cMet. Amivantamab (JNJ-61186372) is an anti-EGFR and anti-cMet bispecific low fucose antibody with enhanced Fc function designed to treat tumors driven by activated EGFR and/or cMet signaling. Potent in vivo antitumor efficacy is observed upon amivantamab treatment of human tumor xenograft models driven by mutant activated EGFR, and this activity is associated with receptor downregulation. Despite these robust antitumor responses in vivo, limited antiproliferative effects and EGFR/cMet receptor downregulation by amivantamab were observed in vitro. Interestingly, in vitro addition of isolated human immune cells notably enhanced amivantamab-mediated EGFR and cMet downregulation, leading to antibody dose-dependent cancer cell killing. Through a comprehensive assessment of the Fc-mediated effector functions, we demonstrate that monocytes and/or macrophages, through trogocytosis, are necessary and sufficient for Fc interaction-mediated EGFR/cMet downmodulation and are required for in vivo antitumor efficacy. Collectively, our findings represent a novel Fc-dependent macrophage-mediated antitumor mechanism of amivantamab and highlight trogocytosis as an important mechanism of action to exploit in designing new antibody-based cancer therapies.

Usage metrics

    Molecular Cancer Therapeutics



    Ref. manager