American Association for Cancer Research
Browse

Supplementary Figures &Tables from Reprogramming Transcription Factors Oct4 and Sox2 Induce a BRD-Dependent Immunosuppressive Transcriptome in GBM-Propagating Cells

Download (2.73 MB)
journal contribution
posted on 2023-03-31, 04:47 authored by Tengjiao Ma, Chengchen Hu, Bachchu Lal, Weiqiang Zhou, Yongxin Ma, Mingyao Ying, Panagiotis Prinos, Alfredo Quiñones-Hinojosa, Michael Lim, John Laterra, Yunqing Li

This document contains supplementary figure 1-6 and supplementary table 1-3

Funding

NIH

SGC

Ontario Genomics Institute

Innovative Medicines Initiative

History

ARTICLE ABSTRACT

A subset of stem-like cells in glioblastoma (GBM; GSC) underlies tumor propagation, therapeutic resistance, and tumor recurrence. Immune evasion is critical for GSCs to carry out these functions. However, the molecular mechanisms employed by GSCs to escape antitumor immunity remain largely unknown. The reprogramming transcription factors Oct4 and Sox2 function as core multipotency factors and play an essential role in the formation and maintenance of GSCs, but the roles of these transcription factors in GSC immune escape have not been well explored. Here we examine how Oct4/Sox2 coexpression contributes to the immunosuppressive phenotype of GSCs. Combined transcription profiling and functional studies of Oct4/Sox2 coexpressing GSCs and differentiated GBM cells demonstrated that Oct4 and Sox2 cooperatively induce an immunosuppressive transcriptome consisting of multiple immunosuppressive checkpoints (i.e., PD-L1, CD70, A2aR, TDO) and dysregulation of cytokines and chemokines that are associated with an immunosuppressive tumor microenvironment. Mechanistically, induction and function of BRD/H3k27Ac-dependent immunosuppressive genes played a role in the immunosuppressive phenotype of GSCs. Pan-BET bromodomain inhibitors (e.g., JQ1) and shBRD4 constructs significantly inhibited the immunosuppressive transcriptome and immunosuppressive biological responses induced by Oct4/Sox2. Our findings identify targetable mechanisms by which tumor-propagating GSCs contribute to the immunosuppressive microenvironment in GBM. This report identifies mechanisms by which the reprogramming transcription factors Oct4 and Sox2 function to drive the immunomodulatory transcriptome of GSCs and contribute to the immunosuppressive microenvironment in GBM.

Usage metrics

    Cancer Research

    Categories

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC