posted on 2023-04-03, 22:44authored byBryan Ngo, Eugenie Kim, Victoria Osorio-Vasquez, Sophia Doll, Sophia Bustraan, Roger J. Liang, Alba Luengo, Shawn M. Davidson, Ahmed Ali, Gino B. Ferraro, Grant M. Fischer, Roozbeh Eskandari, Diane S. Kang, Jing Ni, Ariana Plasger, Vinagolu K. Rajasekhar, Edward R. Kastenhuber, Sarah Bacha, Roshan K. Sriram, Benjamin D. Stein, Samuel F. Bakhoum, Matija Snuderl, Paolo Cotzia, John H. Healey, Nello Mainolfi, Vipin Suri, Adam Friedman, Mark Manfredi, David M. Sabatini, Drew R. Jones, Min Yu, Jean J. Zhao, Rakesh K. Jain, Kayvan R. Keshari, Michael A. Davies, Matthew G. Vander Heiden, Eva Hernando, Matthias Mann, Lewis C. Cantley, Michael E. Pacold
Supplementary Figures and a Supplementary Table
Funding
NIH
Career Transition Fellowship
NRSA
NSF
MSKCC
NCI
Department of Defense
DOD
CPRIT
U.S. Department of Defense
Stand Up To Cancer
European Union
European Commission 7th Research Framework Program
Novo Nordisk Foundation
Mary Kay Foundation
Hearst Foundations
NYU
MRA
PHGDH
Stiftelsen Aust-Agder Utviklings- og Kompetansefond
History
ARTICLE ABSTRACT
A hallmark of metastasis is the adaptation of tumor cells to new environments. Metabolic constraints imposed by the serine and glycine–limited brain environment restrict metastatic tumor growth. How brain metastases overcome these growth-prohibitive conditions is poorly understood. Here, we demonstrate that 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of glucose-derived serine synthesis, is a major determinant of brain metastasis in multiple human cancer types and preclinical models. Enhanced serine synthesis proved important for nucleotide production and cell proliferation in highly aggressive brain metastatic cells. In vivo, genetic suppression and pharmacologic inhibition of PHGDH attenuated brain metastasis, but not extracranial tumor growth, and improved overall survival in mice. These results reveal that extracellular amino acid availability determines serine synthesis pathway dependence, and suggest that PHGDH inhibitors may be useful in the treatment of brain metastasis.
Using proteomics, metabolomics, and multiple brain metastasis models, we demonstrate that the nutrient-limited environment of the brain potentiates brain metastasis susceptibility to serine synthesis inhibition. These findings underscore the importance of studying cancer metabolism in physiologically relevant contexts, and provide a rationale for using PHGDH inhibitors to treat brain metastasis.This article is highlighted in the In This Issue feature, p. 1241