Supplementary Figures S1-S7 from Mechanisms of Drug Sensitization to TRA-8, an Agonistic Death Receptor 5 Antibody, Involve Modulation of the Intrinsic Apoptotic Pathway in Human Breast Cancer Cells
journal contribution
posted on 2023-04-03, 18:05 authored by Hope M. Amm, Tong Zhou, Adam D. Steg, Huichien Kuo, Yufeng Li, Donald J. BuchsbaumSupplementary Figures S1-S7.
History
ARTICLE ABSTRACT
TRA-8, a monoclonal antibody to death receptor 5 induces apoptosis in various cancer cells; however, the degree of sensitivity varies from highly sensitive to resistant. We have previously shown that resistance to TRA-8 can be reversed by using chemotherapeutic agents, but the mechanism underlying this sensitization was not fully understood. Here, we examined the combination of TRA-8 with doxorubicin or bortezomib in breast cancer cells. In TRA-8–resistant BT-474 and T47D cells, both chemotherapy agents synergistically sensitized cells to TRA-8 cytotoxicity with enhanced activation of apoptosis shown by cleavage of caspases and PARP, reduced Bid, increased proapoptotic Bcl-2 proteins, and increased mitochondrial membrane depolarization. Doxorubicin or bortezomib combined with TRA-8 also reduced Bcl-XL and X-linked inhibitors of apoptosis (XIAP) in treated cells. Furthermore, targeting these proteins with pharmacologic modulators, AT-101, BH3I-2′ and AT-406, produced sensitization to TRA-8. TRA-8 combined with AT-101 or BH3I-2′, inhibitors of antiapoptotic Bcl-2 proteins, produced synergistic cytotoxicity against ZR-75-1, BT-474, and T47D cells. The IAP-targeting compound, AT-406, was synergistic with TRA-8 in BT-474 cells, and to a lesser extent T47D cells. Activation of the intrinsic apoptotic pathway was a common mechanism associated with sensitization of TRA-8–resistant breast cancer cell lines. Collectively, these studies show that the Bcl-2 and IAP families of proteins are involved in TRA-8 and chemotherapy resistance via their modulation of the intrinsic apoptotic pathway. Targeting these proteins with novel agents sensitized TRA-8–resistant breast cancer cells, suggesting this approach may represent a potent therapeutic strategy in the treatment of breast cancer. Mol Cancer Res; 9(4); 403–17. ©2011 AACR.Usage metrics
Categories
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC