American Association for Cancer Research
10780432ccr102289-sup-supplementary_figures_s1-s2.pdf (392.62 kB)

Supplementary Figures S1-S2 from Dual Targeting of Phosphoinositide 3-Kinase and Mammalian Target of Rapamycin Using NVP-BEZ235 as a Novel Therapeutic Approach in Human Ovarian Carcinoma

Download (392.62 kB)
journal contribution
posted on 2023-03-31, 16:20 authored by Chintda Santiskulvong, Gottfried E. Konecny, Mirela Fekete, Kuang-Yui Michael Chen, Amer Karam, David Mulholland, Carol Eng, Hong Wu, Min Song, Oliver Dorigo

Supplementary Figures S1-S2.



Purpose: This study evaluates the effect of dual PI3K and mTOR inhibition using NVP-BEZ235 in preclinical models of ovarian cancer as a potential novel therapeutic strategy.Experimental Design: Inhibition of PI3K/Akt/mTOR signaling by NVP-BEZ235 was demonstrated by immunoblotting. The effect on cell proliferation was assessed in 18 ovarian cancer cell lines, including four pairs of syngeneic cisplatin-sensitive and cisplatin-resistant cell lines. The in vivo effects of NVP-BEZ235 on established tumor growth were evaluated using an immunocompetent, transgenic murine ovarian cancer model (LSL-K-rasG12D/+PtenloxP/loxP).Results: NVP-BEZ235 decreased cell proliferation in all ovarian cancer cell lines assayed and sensitized cisplatin-resistant cells to the cytotoxic effects of cisplatin. Cell lines with PI3K-activating mutations or Pten deletions were significantly more sensitive to the effect of NVP-BEZ235 than cell lines without these mutations (P < 0.05). A statistically significant correlation was found between relative levels of p4E-BP1 and the IC50 for NVP-BEZ235. In LSL-K-rasG12D/+PtenloxP/loxP mice with established intraperitoneal tumor disease, oral administration of NVP-BEZ235 decreased pAkt, p4E-BP1 and Ki67 in tumor tissue, and resulted in significantly longer survival compared to control animals (P < 0.05). NVP-BEZ235 also induced cell cycle arrest, caspase 3 activity, and reduced cell migration.Conclusions: Targeting PI3K and mTOR simultaneously using NVP-BEZ235 effectively inhibits ovarian cancer cell growth even in the presence of platinum resistance and prolongs survival of mice with intra-abdominal ovarian tumor disease. We propose that dual PI3K and mTOR inhibition using NVP-BEZ235 may be an effective novel therapeutic approach in patients with ovarian cancer. Clin Cancer Res; 17(8); 2373–84. ©2011 AACR.