Figure S1. The effects of IFN- α in combination with an anti-PD-1 antibody on HCC patients' peripheral subpopulations of CD8⁺ T cells. (A-D) Percentages of subpopulations of CD8 $^+$ T cells in the peripheral blood collected from pretreatment versus that collected from post- treatment of PD-1 blockade and IFN- α (n=8). All data presented are shown as the mean \pm SD. ## Figure S2. IFN- α in combination with an anti-PD-1 antibody augmented antitumor immunity and altered the immune landscape of the TME. - (A-B) Body weight of Hepa1-6 (A) and H22 (B) tumor-bearing mice treated with vehicle + 10 mg/kg lgG, 1 x 10⁴ IU IFN-α, 10 mg/kg anti-PD-1, or the combination therapy. - (C) Growth curves of H22 tumors in BALB/c mice (vehicle + IgG, 10 mg/kg, n = 18; IFN- α , 1 x 10⁴IU, n = 12; anti-PD-1, 10 mg/kg, n = 12; combination therapy, n = 15). - (D) Survival curves of BALB/c mice bearing H22 tumors (n=15 per group) who received 10 mg/kg lgG, 1 x 10^4 IU IFN- α , 10 mg/kg anti-PD-1, or the combination therapy. - (E) HNF4 α and CK-19 immunohistochemistry on liver sections obtained from spontaneous HCC model. Nuclear staining indicated HNF-4 α positive cells in the middle panel. Scale bars: 100 μ m. - (F-G) Representative hematoxylin-eosin staining of Hepa1-6 (F) and H22 (G) tumor tissues in the indicated groups. T, tumor; N, necrotic region. - (H) Representative hematoxylin-eosin staining of lungs from mice bearing H22 tumors (vehicle + IgG, 10 mg/kg, n = 18; IFN- α , 1 x 10⁴IU, n = 12; anti-PD-1, 10 mg/kg, n = 12; combination therapy, n = 15) and the incidence of lung metastasis in the indicated groups. - (I) At the indicated end points, Hepa1-6 tumor-bearing NCG mice treated with vehicle or 1 x 10⁴ IU IFN-α were sacrificed, and the livers from the mice are shown. - (J) Expression pattern of indicated genes among malignant cells, CD8⁺ T, and CD4⁺ T cells according to single-cell sequencing data of a previous report²⁹. - (K) Expression levels of IFNAR1 among malignant cells, CD8+ T, and CD4+ T cells according to published single-cell sequencing data. - (L) Immunoblotting assay results for IFNAR1 between malignant and CD8+T derived from orthotopic Hepa1-6 mice models. - (M) Ifnar1 expression was silenced by using shRNA, and Ifnar1-knocked down Hepa1-6 cells were transplanted to generate orthotopic mice models, followed by indicated treatment. The livers bearing Hepa1-6 tumors after distinct treatment were shown (left). Quantifications of volume of Ifnar1-knocked down tumors after receiving indicated treatment (right). - (N) t-SNE plots of infiltrating lymphoid compartment (blue) and myeloid compartment (orange) by CyTOF analysis from Hepa1-6 tumors given the indicated treatment. - (O) t-SNE plots of infiltrating immune cells colored by the relative expression of the indicated markers in each group. - (P) Proportions of progenitor exhausted CD8⁺ T cells in tumor tissues derived from murine models received indicated therapy were analyzed by flow cytometry assays. - (Q) Proportions of terminal exhausted CD8+ T cells in tumor tissues derived from murine models received indicated therapy were analyzed by flow cytometry assays. The results are shown as the mean ± SD and the statistical significance of differences between groups was determined by an unpaired Student's *t* test. Figure S3. IFN-α plus an anti-PD-1 antibody exerted antitumor effects in a CD8⁺ T cell-dependent manner, and CD27⁺CD8⁺ T cells correlated with immune activation. - (A-B) At the indicated end points, mice treated with 10 mg/kg lgG, 10 mg/kg anti-CD4, 10 mg/kg anti-CD8, or both depleting antibodies were sacrificed. The livers bearing Hepa1-6 tumors (A) and the related Hepa1-6 tumors (B) are shown. - (C) t-SNE plots showing the relative expression of CD27 in CD8+ T cells for each treatment condition. statistical significance of differences between groups was determined by an unpaired Student's t test. - (D) A graph abstract of HCC patient-derived organoid and autologous intratumoral immune cells co-culture model. - (E-F) Tumor cells and CD8+ tumor infiltrating lymphocytes (TILs) were isolated from same HCC patient (n=5) and cultured respectively for 3 days. On day 3, HCC organoids and CD8+TILs were directly co-cultured in 5:1 ratio, supplemented with 1 x 10⁴ IU/ml IFN-α plus 100 μg/ml anti-PD-1 antibody. After 72 hours of co-culture, the CD27+CD8+ T cell population was evaluated by flow cytometry. - (G) Violin plot showing CD27 expression in the indicated clusters from HCC patients evaluated by single-cell sequencing. The results are shown as the mean ± SD for experiments performed in triplicate. Each experiment was repeated three times, and the Figure S4. IFN-α hindered glycolysis in tumors by inhibiting HIF1α signaling to foster the activation of CD8* T cells. (A) Immunoblot assays for HIF1α, PKM2, LDHA, and HK1 in H22 cells and CD8* T cells derived from distinct mouse models that received the indicated treatments. IFN-α concentration: 1 x 10⁴ IU; anti-PD-1 concentration: 10 mg/kg. β-Actin was used as an internal control. - (B) PCNA and cleaved Caspase-3 expression in HCC and CD8⁺ T cells derived from Hepa1-6 mouse models that received the indicated treatments was determined by immunoblot assays. IFN-α concentration: 1 x 10⁴ IU; anti-PD-1 concentration: 10 mg/kg. β-Actin was used as an internal control. - (C) CFSE-labeled murine spleen CD8+T cells were cultured in the present of αCD3 and αCD28 in low-glucose (5 mM) or high-glucose (25 mM) RPMI medium, respectively, for three days. The fluorescence of CSFE was measured by flow cytometry. The proliferation rate of T cells was determined as the proportion of cells with reduced CFSE intensity due to cell division. - (D) Murine spleen CD8+T cells were cultured in the present of α CD3 and α CD28 in low-glucose (5 mM) or high-glucose (25 mM) RPMI medium, respectively, for three days. IFN- γ +CD8+T cells were gated and calculated. - (E) ECAR results for tumor cells derived from distinct H22 mouse models that received IgG, 10 mg/kg anti-PD-1, 1 x 10⁴ IU IFN-α or combination treatment. - (F) ECAR results for CD8+ T cells derived from different H22 mouse models that received IgG, 10 mg/kg anti-PD-1, 1 x 10⁴ IU IFN-α or combination treatment. - (G) Glucose concentration in the extracellular milieu of HCC tissues derived from different H22 mouse models that received IgG, 10 mg/kg anti-PD-1, 1 x 10^4 IU IFN- α or combination treatment. - (H) IFN- γ^+ CD8+ T cells derived from different H22 mouse models that received IgG, 10 mg/kg anti-PD-1, 1 x 104 IU IFN- α or combination treatment. - (I) CD27+ CD8+ T cells derived from different H22 mouse models that received IgG, 10 mg/kg anti-PD-1, 1 x 10^4 IU IFN- α or combination treatment. - (J) Murine spleen CD8⁺T cells were activated in the present of αCD3 and αCD28 for three days and then treated with or without IFN-α for another 24 hours. CD27⁺CD8⁺ T cells were measured by flow cytometry. - (K) CFSE-labeled murine spleen CD8+T cells were activated in the present of α CD3 and α CD28 for three days and then treated with or without IFN- α for another 24 hours. The fluorescence of CSFE was measured by FACS. The proliferation rate of T cells was determined as the proportion of cells with reduced CFSE intensity due to cell division. - (L) Murine spleen CD8+T cells were activated in the present of αCD3 and αCD28 for three days and then treated with or without IFN-α for another 24 hours. For IFN-γ measurement, T cells were stimulated with PMA, ionomycin and golgi block for 4 hours and signals of IFN-γ were determined by flow cytometry. - (M) The efficiency of HIF1α inhibition (10 μM KC7F2) in Hepa1-6 (left) and H22 (right) cells was validated by immunoblot assay. - (N) ECAR results for H22 cells that received IgG or 100 μg/ml anti-PD1 treatment with or without 10 μM KC7F2. - (O) ECAR results for CD8+T cells after coculture with H22 cells that received IgG or 100 μ g/ml anti-PD-1 treatment with or without 10 μ M KC7F2. - (P) CD27⁺ proportion of CD8⁺ T cells after coculture with tumor cells that received IgG or 100 μg/ml anti-PD1 treatment with or without 10 μM KC7F2. - (Q) IFN-γ+ proportion of CD8+ T cells after coculture with tumor cells that received IgG or 100 μg/ml anti-PD1 treatment with or without 10 μM KC7F2. The results are shown as the mean ± SD for experiments performed in triplicate. Each experiment was repeated three times, and the statistical significance of differences between groups was determined by an unpaired Student's *t* test. Figure S5. IFN- α treatment restricted HIF1 α signaling by restraining the expression of FosB, a cotranscriptional effector of HIF1 α , in an IRF1-dependent manner. - (A) After 48 h of IFN-α treatment, CD27 expression in OT-I CTLs which co-cultured with EL4 cells was detected by flow cytometry. - **(B)** OT-I mouse cytotoxic T cells were used to detect the activity of the combination of IFN-α and anti-PD-1 *in vitro*. OT-I CTLs were treated with anti-PD-1 antibody and different IFN-α concentrations. Different E:T ratios were used to evaluate activity. - (C) OT-I mouse cytotoxic T cells were used to detect the activity of the combination of IFN-α and distinct concentrations of glucose *in vitro*. OT-I CTLs were treated with low or high glucose and different IFN-α concentrations. Different E:T ratios were used to evaluate activity. - (D) The expression of FosB in tumor cells derived from H22 model mice that received the indicated treatments were detected by immunoblot assays. IFN- α concentration: 1 x 10⁴ IU; anti-PD-1 concentration: 10 mg/kg. β -Actin was used as an internal control. - (E) The impacts of FosB silencing on PKM2 and LDHA expression in H22 cells were evaluated by immunoblot assays. - **(F)** HIF1α and FosB were cotransfected into 293T cells, and PKM2, LDHA, PFKL, and HK1 expression was determined by immunoblot assays. - (G) ECAR results for 293T cells transfected with the indicated plasmids. - (H) Impacts of IFN-α exposure duration on FosB expression in Hepa1-6 cells that received 500 IU IFN-α. - (I) Impacts of IFN- α exposure duration on FosB expression in H22 cells that received 500 IU IFN- α . - (J) The impacts of IFN- α on the expression of IRF1 in whole-cell lysates and nuclear fractions of H22 cells were evaluated by nuclear-cytoplasmic fractionation followed by immunoblot assays. IFN- α : 0 IU/ml, 50 IU/ml, 100 IU/ml, or 500 IU/ml. The results are shown as the mean \pm SD for experiments performed in triplicate. Each experiment was repeated three times, and the statistical significance of differences between groups was determined by an unpaired Student's t test. Figure S6. A high-glucose microenvironment promotes CD8⁺ T cell activation via mTOR-induced FOXM1 expression - (A) Paired tumor cells and CD8+ tumor infiltrating lymphocytes (TILs) were isolated from HCC patients (n=5) and cultured respectively for 3 days. TILs were pre-treated with or without 200 ng/ml rapamycin for 72 hours. On day 3, HCC organoids and CD8+ TILs were directly co-cultured in 5:1 ratio, supplemented with 1 x 10⁴ IU/ml IFN- α plus 100 μ g/ml anti-PD-1 antibody. After 72 hours of co-culture, the CD27+CD8+ T cell population was evaluated by flow cytometry. The data are presented as mean \pm SD. *p < 0.05. - (B) Murine spleen CD8⁺ T cells were isolated and cultured in the presence of αCD3 and αCD28. On the next day, T cells were infected with *Foxm1*-overexpressing or vehicle control retrovirus for another 48 hours. Cells were collected and CD27 signal was measured by flow cytometry. - (C-D) For IFN-γ and IL-2 measurement, T cells were stimulated with PMA, ionomycin and golgi block for 4 hours and signals of IFN-γ (C) and IL-2 (D) were determined by flow cytometry, respectively. - (E) Murine spleen CD8⁺ T cells were isolated and cultured in the presence of αCD3 and αCD28. On the next day, T cells were transfected with Foxm1-targeting siRNA or control siRNA. 48 hours later, T cells were collected and CD27 signal was measured by flow cytometry. - (F-G) For IFN-γ and IL-2 measurement, T cells were stimulated with PMA, ionomycin and golgi block for 4 hours and signals of IFN-γ (F) and IL-2 (G) were determined by flow cytometry, respectively. - All data are representative of three independent experiments and presented as mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001. Supplementary table 1. Characteristics of the Patients at Baseline. | Characteristics | Patients(N=15) | % | | | | | |---|----------------|----|--|--|--|--| | Age at enrollment(years) | | | | | | | | Median(range) | 56 (31-69) | | | | | | | <60 years | 10 | 67 | | | | | | ≥60 years | 5 | 33 | | | | | | Sex | | | | | | | | Female | 3 | 20 | | | | | | Male | 12 | 80 | | | | | | Aetiology | | | | | | | | HBV | 13 | 87 | | | | | | HCV | 1 | 7 | | | | | | NASH | 0 | 0 | | | | | | Other | 1 | 7 | | | | | | Tumor size (cm) | | | | | | | | ≤5 | 3 | 20 | | | | | | >5 | 12 | 80 | | | | | | Tumor number | | | | | | | | Single | 4 | 27 | | | | | | multiple | 11 | 73 | | | | | | AFP | | | | | | | | Elevated | 10 | 67 | | | | | | ТВ | | | | | | | | Elevated | 3 | 20 | | | | | | ALT | | | | | | | | Elevated | 4 | 27 | | | | | | BCLC stage | | | | | | | | A+B | 8 | 53 | | | | | | C+D | 7 | 47 | | | | | | CNLC stage ¹ | 9 | 50 | | | | | | +
 - - - - - - - - - - - - | 8 | 53 | | | | | | III+IV Abbreviations: AFP, alpha-fetopro | 7 | 47 | | | | | **Abbreviations:** AFP, alpha-fetoprotein; ALT, alanine aminotransferase; CNLC stage, China Liver Cancer stage; BCLC stage, Barcelona Clinic Liver Cancer stage. ## Reference ^{1.} Zhou J, Sun H, Wang Z, et al. Guidelines for the Diagnosis and Treatment of Hepatocellular Carcinoma (2019 Edition). Liver Cancer. 2020;9:682-720. Supplementary table 2. Antibodies used for CyTOF staining | Isotypes | Antibodies | Clone | Source | Identifier | |----------|---------------|-----------|----------------|------------| | 89Y | CD45 | 30-F11 | BioLegend | 103102 | | 115ln | CD3e | 145.2C11 | BioLegend | 100302 | | 139La | CD44 | IM7 | BioLegend | 103002 | | 141Pr | CD24 | M1/69 | BioLegend | 101802 | | 142Nd | MHC II | Y3P | Bio-Xcell | BE0178 | | 143Nd | CD45R(B220) | RA3-6B2 | BioLegend | 103202 | | 144Nd | CX3CR1 | SA011F11 | BioLegend | 149002 | | 145Nd | CD21/CD35 | 7G6 | BD Biosciences | 559831 | | 146Nd | IgM | RMM-1 | BioLegend | 406502 | | 147Sm | CD80 | 16-10A1 | BioLegend | 104702 | | 148Nd | Ly-6C | HK1.4 | BioLegend | 128002 | | 149Nd | CD172a(SIRPα) | P84 | BioLegend | 144002 | | 150Nd | IgD | 11-26c.2a | BioLegend | 405702 | | 151Eu | CD62L | MEL14 | BioLegend | 104402 | | 152Sm | CD11c | N418 | BioLegend | 117302 | | 153Eu | TCRgd | GL3 | in-house | NA | | 154Sm | Ki-67 | SolA15 | eBioscience | 14-5698-82 | | 155Gd | CD38 | 90 | BioLegend | 102702 | | 156Gd | CD317(BST2) | 44E9R | R&D systems | MAB8660 | | 157Gd | CD27 | LG.3A10 | BioLegend | 124202 | | 158Gd | CD19 | 6D5 | BioLegend | 115502 | | 159Tb | F4/80 | C1:A3-1 | Bio-RAD | MCA497G | | 160Gd | CD115(CSF-1R) | AFS98 | BioLegend | 135502 | | 161Dy | iNOS | CXNFT | eBioscience | 14-5920-82 | | 162Dy | CD183(CXCR3) | CXCR3-173 | BioLegend | 126502 | | 163Dy | CD25 | 3C7 | BioLegend | 101902 | | 164Dy | CD103 | 2E7 | BioLegend | 121402 | | 165Ho | CD278(ICOS) | C398.4A | BioLegend | 313502 | | 166Er | Arginase I | polyclone | Fluidigm | 3166023B | | 167Er | CD49b | DX5 | BioLegend | 108902 | | 168Er | Foxp3 | FJK-16s | eBioscience | 14-5773-82 | | 169Tm | CD69 | H1.2F3 | BioLegend | 104502 | | 170Er | CD49a | HMa1 | BioLegend | 142602 | | 171Yb | CD23 | B3B4 | BioLegend | 101602 | | 172Yb | CD127 | A7R34 | BioLegend | 135002 | | 173Yb | Granzyme B | GB11 | Fluidigm | 3173006B | | 174Yb | CD152(CTLA-4) | UC10-4B9 | BioLegend | 106302 | | 175Lu | TCRab | H57-597 | BioLegend | 109202 | | 176Yb | CD43 | S11 | BioLegend | 143202 | | 197Au | CD4 | RM4-5 | BioLegend | 100520 | | 198Pt | CD8a | 53-6.7 | BioLegend | 100716 | | 209Bi | CD11b | M1/70 | in-house | NA |