Supplementary Figure S2 from Activation of the FGF2-FGFR1 Autocrine Pathway: A Novel Mechanism of Acquired Resistance to Gefitinib in NSCLC
journal contribution
posted on 2023-04-03, 16:06 authored by Hideki Terai, Kenzo Soejima, Hiroyuki Yasuda, Sohei Nakayama, Junko Hamamoto, Daisuke Arai, Kota Ishioka, Keiko Ohgino, Shinnosuke Ikemura, Takashi Sato, Satoshi Yoda, Ryosuke Satomi, Katsuhiko Naoki, Tomoko BetsuyakuSupplementary Figure S2 - PDF file 411K,Sequencing results of EGFR exon 20 of the genomic DNA extracted from PC9 and HCC827 cells. There was no T790M second mutation of EGFR gene
History
ARTICLE ABSTRACT
Patients with non-small cell lung cancer (NSCLC) that harbors epidermal growth factor receptor (EGFR) mutations initially respond to EGFR-tyrosine kinase inhibitors (TKI) but eventually experience relapse. Acquired resistance to EGFR-TKIs is strongly associated with patient mortality. Thus, elucidation of the mechanism of acquired resistance to EGFR-TKIs is of great importance. In this study, gefitinib-resistant cell line models were established by long-term exposure to gefitinib using the gefitinib-sensitive lung cancer cell lines, PC9 and HCC827. Expression analyses indicated that both FGFR1 and FGF2 were increased in PC9 gefitinib-resistant (PC9 GR) cells as compared with PC9 naïve (PC9 na) cells. Importantly, proliferation of gefitinib-resistant cells was dependent on the FGF2 -FGFR1 pathway. Mechanistically, inhibition of either FGF2 or FGFR1 by siRNA or FGFR inhibitor (PD173074) restored gefitinib sensitivity in PC9 GR cells. These data suggest that FGF2 -FGFR1 activation through an autocrine loop is a novel mechanism of acquired resistance to EGFR-TKIs. Mol Cancer Res; 11(7); 759–67. ©2013 AACR.Usage metrics
Keywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC