posted on 2024-10-30, 14:40authored byKelly D. Moynihan, Manu P. Kumar, Hussein Sultan, Danielle C. Pappas, Terrence Park, S. Michael Chin, Paul Bessette, Ruth Y. Lan, Henry C. Nguyen, Nathan D. Mathewson, Irene Ni, Wei Chen, Yonghee Lee, Sindy Liao-Chan, Jessie Chen, Ton N.M. Schumacher, Robert D. Schreiber, Yik A. Yeung, Ivana M. Djuretic
Supplementary Figure S1: CD8+ T cells drive anti-tumor activity but NK cells are responsible for toxicity with not-α-IL2 therapy.
Funding
National Cancer Institute (NCI)
United States Department of Health and Human Services
IL2 signals pleiotropically on diverse cell types, some of which contribute to therapeutic activity against tumors, whereas others drive undesired activity, such as immunosuppression or toxicity. We explored the theory that targeting of IL2 to CD8+ T cells, which are key antitumor effectors, could enhance its therapeutic index. To this aim, we developed AB248, a CD8 cis-targeted IL2 that demonstrates over 500-fold preference for CD8+ T cells over natural killer and regulatory T cells (Tregs), which may contribute to toxicity and immunosuppression, respectively. AB248 recapitulated IL2’s effects on CD8+ T cells in vitro and induced selective expansion of CD8+T cells in primates. In mice, an AB248 surrogate demonstrated superior antitumor activity and enhanced tolerability as compared with an untargeted IL2Rβγ agonist. Efficacy was associated with the expansion and phenotypic enhancement of tumor-infiltrating CD8+ T cells, including the emergence of a “better effector” population. These data support the potential utility of AB248 in clinical settings.Significance: The full potential of IL2 therapy remains to be unlocked. We demonstrate that toxicity can be decoupled from antitumor activity in preclinical models by limiting IL2 signaling to CD8+ T cells, supporting the development of CD8+ T cell–selective IL2 for the treatment of cancer.See related article by Kaptein et al. p. 1226.