SUPPLEMENTARY FIGURE LEGENDS AND FIGURES

Supplementary Figure S1. A) Sanger sequencing trace of XTC.UC1 PCR-amplified *MT-ND1*. B) Tumor volume of NCI-237-R^{PDX} implanted subcutaneously in immunodeficient mice. Data are plotted as mean ± SD of 4 tumors. C) Sanger sequencing trace of MT-ND5. D) Sanger sequencing trace of MT-ND1. E) Sanger sequencing trace of DNMT3A. F) Sanger sequencing trace of NF1. G) Sanger sequencing trace of NF2. Sanger sequencing traces in C-G come from direct sequencing of PCR products amplified from NCI-237-R^{PDX.} H) Tumor volume of NCI-237^{UTSW} cells injected subcutaneously in immunodeficient mice. Data are plotted as mean ± SD of 4 tumors. I) Sanger sequencing trace of MT-ND5. J) Sanger sequencing trace of MT-ND1. K) Sanger sequencing trace of DNMT3A. L) Sanger sequencing trace of NF1. M) Sanger sequencing trace of NF2. Sanger sequencing traces in I-M come from direct sequencing of PCR products amplified from NCI-237^{UTSW} cells. N) Oxygen consumption rates for intact cells; n = 6-8 replicates. Oligo = oligomycin; CCCP = carbonyl cyanide 3-chlorophenylhydrazone; Anti A = antimycin A. NCI-237^{xeno} cells are from an NCI-237^{UTSW} xenograft tumor formed in immunodeficient mice. Cells were assayed for oxygen consumption approximately 24 hours after tumor dissociation. Data are plotted as mean \pm SEM. O) Schematic for labeling of key central carbon metabolites from [U-¹³C₆] glucose under canonical oxidative conditions (top) or pyruvate carboxylase-mediated TCA cycle anaplerosis (*bottom*). PDH = pyruvate dehydrogenase; CS = citrate synthase; PCB = pyruvate carboxylase; GOT2 = glutamic-oxaloacetic transaminase 2; OAA = oxaloacetate. P) Mass isotopomer abundance for the indicated metabolites in cells cultured with [U-¹³C₆] glucose for 6 hours. Data are plotted as mean \pm SEM of 3 replicates. α -KG = alpha-ketoglutarate.

Supplementary Figure S2. A) Growth curves of NCI-237^{RPMI} and TPC-1^{RPMI} in primary genomewide CRISPR-Cas9 knockout screen. B) Plot of genes for NCI-237^{RPMI} based on median log₂ foldchange in sgRNA abundance. C) Plot of genes for TPC-1^{RPMI} based on median log₂ fold-change in sgRNA abundance. Enriched genes are highlighted in blue; depleted genes are highlighted in red. D) Growth curves of NCI-237^{RPMI}, TPC-1^{RPMI}, and UTSW-354^{RPMI} replicates (n = 2) in targeted validation screen. E) Growth curves of NCI-237^{HPLM}, TPC-1^{HPLM}, and UTSW-354^{HPLM} replicates (*n* = 2) in targeted validation screen. F) Plot of gene log_2 fold-change values for NCI-237^{RPMI} and NCI-237^{HPLM} validation screens. Data reflect median log₂ fold-change in sgRNA abundance based on 2 replicates for each condition. G) Plot of genes from validation screen based on Depletion Score comparing NCI-237^{RPMI} and TPC-1^{RPMI}. H) Plot of genes from validation screen based on Depletion Score comparing NCI-237^{RPMI} and UTSW-354^{RPMI}. Depletion Score for G) and H) are calculated as [(NCI-237^{RPMI} gene log₂ fold-change) – (TPC-1^{RPMI}/UTSW-354^{RPMI} gene log₂ foldchange)]. Gene log₂ fold-change values reflect median log₂ fold-change in sgRNA abundance based on 2 replicates for each cell line. I) Fold-change in cell number of indicated cell lines in media lacking glucose or galactose, media containing 5 mM galactose, or media containing 5 mM glucose. Data are plotted as mean ± SEM of 3 replicates. Dashed line = 1.

Supplementary Figure S3. A) Viability assay for cells treated with 2-DG for 3 days. B) Viability assay for cells treated with POMHEX for 3 days. C) Viability assay for cells treated with (R)-GNE-140 for 3 days. D) Viability assay for cells treated with NCGC00420737 for 3 days. E) Viability assay for UTSW-354 cotreated with (R)-GNE-140 and indicated doses of piericidin A for 3 days. F) Viability assay for UTSW-354 cotreated with NCGC00420737 and indicated doses of piericidin A for 3 days. F) Viability assay for UTSW-354 cotreated with NCGC00420737 and indicated doses of piericidin A for 3 days. F) Viability assay for UTSW-354 cotreated with NCGC00420737 and indicated doses of piericidin A for 3 days. F) Viability assay for UTSW-354 cotreated with NCGC00420737 and indicated doses of piericidin A for 3 days. Data are plotted as mean ± SEM of 2 replicates. G) Table of RNA-Seq FPKM values for *LDH* genes in indicated cell lines.

Supplementary Figure S4. A) NADH:NAD⁺ ratio in cells treated with (R)-GNE-140 for 4 hours; n = 2 replicates. B) Metabolite levels in NCI-237^{UTSW} cells treated with 40 nM NCGC00420737 for 4 hours; n = 3 replicates. DHAP = dihydroxyacetone phosphate. C) Metabolite levels in NCI-237^{UTSW} cells treated with 1 μ M (R)-GNE-140 for 4 hours; n = 3 replicates. G-3-P = glyceraldehyde-3-phosphate; DHAP = dihydroxyacetone phosphate; 3-PG = 3-phosphoglycerate. D) Immunoblot for phospho-AMPKa^{T172} and total AMPKa in NCI-237^{UTSW} cells treated with indicated doses of (R)-GNE-140 and NCGC00420737 for 4 hours.

Supplementary Figure S5. A) Immunoblot for FLAG epitope tag in NCI-237^{UTSW} cells with inducible expression of indicated constructs. Cells were exposed to 100 ng/mL doxycycline for 24 hours prior to collection. B) NAD+:NADH ratio in NCI-237^{UTSW} cells with inducible expression of indicated constructs. Cells were exposed to 100 ng/mL doxycycline for 24 hours prior to collection; n = 5 replicates. C) Crystal violet staining of NCI-237^{UTSW} cells cultured for 4 days under the indicated conditions. D) Viability of NCI-237^{UTSW} cells cultured under the indicated conditions for 48 hours; n = 4 replicates from 2 independent experiments. E) Oxygen consumption rates for intact NCI-237^{UTSW} cells expressing the indicated constructs; n = 6-8 replicates. Oligo = oligomycin; CCCP = carbonyl cyanide 3-chlorophenylhydrazone; Anti A = antimycin A. F) Mass isotopomer abundance for the indicated metabolites in NCI-237^{UTSW} cells cultured with [U-¹³C₆] glucose for 4 hours; n = 3 replicates. G) Metabolite levels in NCI-237^{UTSW} cells expressing AcGFP, NDI1, or LbNOX treated with 40 nM NCGC00420737 for 4 hours; n = 3 replicates. DHAP = dihydroxyacetone phosphate. H) Metabolite levels in NCI-237^{UTSW} cells expressing AcGFP, NDI1, or LbNOX treated with 1 μ M (R)-GNE-140 for 4 hours; n = 3 replicates. G-3-P = glyceraldehyde-3-phosphate; DHAP = dihydroxyacetone phosphate; 3-PG = 3-phosphoglycerate. I) ATP levels in cells treated with (R)-GNE-140 for 4 hours; n = 4 replicates from 2 independent experiments. Concentrations are 0.041, 0.37, 3.33, and 30 µM (R)-GNE-140. J) ATP levels in NCI-237^{UTSW} cells treated with NCGC00420737 for 4 hours; n = 4 replicates from 2 independent experiments. Concentrations are 0.014, 0.123, 1.11, and 10 µM NCGC00420737. Data for are plotted as mean ± SEM of indicated number of replicates.

Supplementary Figure S6. A) Individual tumor volumes for NCI-237-R^{PDX} xenografts treated with vehicle (n = 5), 30 mg/kg NCGC00420737 (n = 4), or 60 mg/kg NCGC00420737 (n = 5). Vehicle or compound was administered once daily via jugular vein catheter for two treatment cycles (5 days on, 2 days off). A final compound administration was performed on Day 6 of Cycle 2 and animals were sacrificed 1 hour after receiving compound. B) Animal weight for NCI-237-R^{PDX}-bearing immunodeficient mice treated with vehicle (n = 5), 30 mg/kg NCGC00420737 (n = 4), or 60 mg/kg NCGC00420737 (n = 5). C) Red blood cell (left), hematocrit (center), and hemoglobin (right) levels in EDTA-treated whole blood. Blood was collected 1 hour after final administration of compound. D) Volcano plot comparing metabolite levels in NCI-237-RPDX tumors treated with vehicle or 30 mg/kg NCGC00420737. Metabolite levels were determined using LC-MS/MS. Horizontal dashed line = 1.3 (*P*-value \approx 0.05); vertical dashed lines = -1 and 1. E) Volcano plot comparing metabolite levels in NCI-237-RPDX tumors treated with vehicle or 60 mg/kg NCGC00420737. Metabolite levels were determined using LC-MS/MS. Horizontal dashed line = 1.3 (*P*-value \approx 0.05); vertical dashed lines = -1 and 1. *P*-values in D) and E) were determined using two-sided T-test assuming unequal variance. F) Immunoblot for phospho-AMPKα^{T172} and total AMPKα in NCI-237-R^{PDX} tumors. G) Plasma and tumor concentrations of NCGC00420737 determined by LC-MS/MS. Blood and tumors were collected 1 hour after final administration of compound. Data are plotted as mean \pm SD of indicated number of replicates. H) Individual tumor volumes for NCI-237-R^{PDX} xenografts treated with vehicle (n = 5) or 60 mg/kg NCGC00420737 (n = 5). Vehicle or compound was administered once daily via jugular vein catheter for the indicated number of treatment cycles (5 days on, 2 days off). Three animals receiving 60 mg/kg NCGC00420737 died between the end of Cycle 3 and start of Cycle 4. A final compound administration was performed on Day 2 of Cycle 4 and animals were sacrificed 1 hour after receiving compound. I) Final tumor mass for NCI-237-RPDX xenografts from Fig. 5G. J) Animal weight for NCI-237-R^{PDX}-bearing immunodeficient mice treated with vehicle (n = 5) or 60 mg/kg NCGC00420737 (n = 5). K) Red blood cell and hematocrit levels in EDTA-treated whole blood. Blood was collected 1 hour after final administration of compound.

