American Association for Cancer Research
Browse
21598290cd171134-sup-190577_2_supp_4541367_p3g2fs.docx (18.55 kB)

Supplementary Figure Legends from The Pancreatic Cancer Microbiome Promotes Oncogenesis by Induction of Innate and Adaptive Immune Suppression

Download (18.55 kB)
journal contribution
posted on 2023-04-03, 21:41 authored by Smruti Pushalkar, Mautin Hundeyin, Donnele Daley, Constantinos P. Zambirinis, Emma Kurz, Ankita Mishra, Navyatha Mohan, Berk Aykut, Mykhaylo Usyk, Luisana E. Torres, Gregor Werba, Kevin Zhang, Yuqi Guo, Qianhao Li, Neha Akkad, Sarah Lall, Benjamin Wadowski, Johana Gutierrez, Juan Andres Kochen Rossi, Jeremy W. Herzog, Brian Diskin, Alejandro Torres-Hernandez, Josh Leinwand, Wei Wang, Pardeep S. Taunk, Shivraj Savadkar, Malvin Janal, Anjana Saxena, Xin Li, Deirdre Cohen, R. Balfour Sartor, Deepak Saxena, George Miller

Figure Legends for Figures S1-S8.

Funding

NIH

Department of Defense

Lustgarten Foundation

AACR

Panpaphian Association of America

National Pancreas Foundation

Crohn's and Colitis Foundation of America

NYU Provost Office Mega Grant Seed Fund Initiative

Irene and Bernard Schwartz Fellowship in GI Oncology

NYULMC

Cancer Center Support

NCATS

History

ARTICLE ABSTRACT

We found that the cancerous pancreas harbors a markedly more abundant microbiome compared with normal pancreas in both mice and humans, and select bacteria are differentially increased in the tumorous pancreas compared with gut. Ablation of the microbiome protects against preinvasive and invasive pancreatic ductal adenocarcinoma (PDA), whereas transfer of bacteria from PDA-bearing hosts, but not controls, reverses tumor protection. Bacterial ablation was associated with immunogenic reprogramming of the PDA tumor microenvironment, including a reduction in myeloid-derived suppressor cells and an increase in M1 macrophage differentiation, promoting TH1 differentiation of CD4+ T cells and CD8+ T-cell activation. Bacterial ablation also enabled efficacy for checkpoint-targeted immunotherapy by upregulating PD-1 expression. Mechanistically, the PDA microbiome generated a tolerogenic immune program by differentially activating select Toll-like receptors in monocytic cells. These data suggest that endogenous microbiota promote the crippling immune-suppression characteristic of PDA and that the microbiome has potential as a therapeutic target in the modulation of disease progression.Significance: We found that a distinct and abundant microbiome drives suppressive monocytic cellular differentiation in pancreatic cancer via selective Toll-like receptor ligation leading to T-cell anergy. Targeting the microbiome protects against oncogenesis, reverses intratumoral immune tolerance, and enables efficacy for checkpoint-based immunotherapy. These data have implications for understanding immune suppression in pancreatic cancer and its reversal in the clinic. Cancer Discov; 8(4); 403–16. ©2018 AACR.See related commentary by Riquelme et al., p. 386.This article is highlighted in the In This Issue feature, p. 371

Usage metrics

    Cancer Discovery

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC