American Association for Cancer Research
Browse
00085472can130894-sup-fig7.pdf (143.97 kB)

Supplementary Figure 7 from ΔNp63 Promotes Pediatric Neuroblastoma and Osteosarcoma by Regulating Tumor Angiogenesis

Download (143.97 kB)
journal contribution
posted on 2023-03-30, 22:12 authored by Hemant K. Bid, Ryan D. Roberts, Maren Cam, Anthony Audino, Raushan T. Kurmasheva, Jiayuh Lin, Peter J. Houghton, Hakan Cam

PDF file - 143K, Cell cycle analysis.

History

ARTICLE ABSTRACT

The tumor suppressor gene p53 and its family members p63/p73 are critical determinants of tumorigenesis. ΔNp63 is a splice variant of p63, which lacks the N-terminal transactivation domain. It is thought to antagonize p53-, p63-, and p73-dependent translation, thus blocking their tumor suppressor activity. In our studies of the pediatric solid tumors neuroblastoma and osteosarcoma, we find overexpression of ΔNp63; however, there is no correlation of ΔNp63 expression with p53 mutation status. Our data suggest that ΔNp63 itself endows cells with a gain-of-function that leads to malignant transformation, a function independent of any p53 antagonism. Here, we demonstrate that ΔNp63 overexpression, independent of p53, increases secretion of interleukin (IL)-6 and IL-8, leading to elevated phosphorylation of STAT3 (Tyr-705). We show that elevated phosphorylation of STAT3 leads to stabilization of hypoxia-inducible factor 1α (HIF-1α) protein, resulting in VEGF secretion. We also show human clinical data, which suggest a mechanistic role for ΔNp63 in osteosarcoma metastasis. In summary, our studies reveal the mechanism by which ΔNp63, as a master transcription factor, modulates tumor angiogenesis. Cancer Res; 74(1); 320–9. ©2013 AACR.

Usage metrics

    Cancer Research

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC