Supplementary Figure 5 from Galectin-1 Promotes Lung Cancer Progression and Chemoresistance by Upregulating p38 MAPK, ERK, and Cyclooxygenase-2
journal contribution
posted on 2023-03-31, 17:00 authored by Ling-Yen Chung, Shye-Jye Tang, Guang-Huan Sun, Teh-Ying Chou, Tien-Shun Yeh, Sung-Liang Yu, Kuang-Hui SunPDF file, 155KB, Tissue microarray data.
History
ARTICLE ABSTRACT
Purpose: This study is aimed at investigating the role and novel molecular mechanisms of galectin-1 in lung cancer progression.Experimental Design: The role of galectin-1 in lung cancer progression was evaluated both in vitro and in vivo by short hairpin RNA (shRNA)-mediated knockdown of galectin-1 in lung adenocarcinoma cell lines. To explore novel molecular mechanisms underlying galectin-1–mediated tumor progression, we analyzed gene expression profiles and signaling pathways using reverse transcription PCR and Western blotting. A tissue microarray containing samples from patients with lung cancer was used to examine the expression of galectin-1 in lung cancer.Results: We found overexpression of galectin-1 in non–small cell lung cancer (NSCLC) cell lines. Suppression of endogenous galectin-1 in lung adenocarcinoma resulted in reduction of the cell migration, invasion, and anchorage-independent growth in vitro and tumor growth in mice. In particular, COX-2 was downregulated in galectin-1–knockdown cells. The decreased tumor invasion and anchorage-independent growth abilities were rescued after reexpression of COX-2 in galectin-1–knockdown cells. Furthermore, we found that TGF-β1 promoted COX-2 expression through galectin-1 interaction with Ras and subsequent activation of p38 mitogen-activated protein kinase (MAPK), extracellular signal–regulated kinase (ERK), and NF-κB pathway. Galectin-1 knockdown sensitized lung cancer cells to platinum-based chemotherapy (cisplatin). In addition, galectin-1 and COX-2 expression was correlated with the progression of lung adenocarcinoma, and high clinical relevance of both proteins was evidenced (n = 47).Conclusions: p38 MAPK, ERK, and COX-2 activation are novel mediators for the galectin-1–promoted tumor progression and chemoresistance in lung cancer. Galectin-1 may be an innovative target for combined modality therapy for lung cancer. Clin Cancer Res; 18(15); 4037–47. ©2012 AACR.Usage metrics
Categories
Keywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC