American Association for Cancer Research
Browse
00085472can100881-sup-sfig_5.pdf (2.11 MB)

Supplementary Figure 5 from Aldehyde Dehydrogenase Activity Selects for Lung Adenocarcinoma Stem Cells Dependent on Notch Signaling

Download (2.11 MB)
journal contribution
posted on 2023-03-30, 19:43 authored by James P. Sullivan, Monica Spinola, Michael Dodge, Maria G. Raso, Carmen Behrens, Boning Gao, Katja Schuster, Chunli Shao, Jill E. Larsen, Laura A. Sullivan, Sofia Honorio, Yang Xie, Pier P. Scaglioni, J. Michael DiMaio, Adi F. Gazdar, Jerry W. Shay, Ignacio I. Wistuba, John D. Minna
Supplementary Figure 5 from Aldehyde Dehydrogenase Activity Selects for Lung Adenocarcinoma Stem Cells Dependent on Notch Signaling

History

ARTICLE ABSTRACT

Aldehyde dehydrogenase (ALDH) is a candidate marker for lung cancer cells with stem cell-like properties. Immunohistochemical staining of a large panel of primary non–small cell lung cancer (NSCLC) samples for ALDH1A1, ALDH3A1, and CD133 revealed a significant correlation between ALDH1A1 (but not ALDH3A1 or CD133) expression and poor prognosis in patients including those with stage I and N0 disease. Flow cytometric analysis of a panel of lung cancer cell lines and patient tumors revealed that most NSCLCs contain a subpopulation of cells with elevated ALDH activity, and that this activity is associated with ALDH1A1 expression. Isolated ALDH+ lung cancer cells were observed to be highly tumorigenic and clonogenic as well as capable of self-renewal compared with their ALDH− counterparts. Expression analysis of sorted cells revealed elevated Notch pathway transcript expression in ALDH+ cells. Suppression of the Notch pathway by treatment with either a γ-secretase inhibitor or stable expression of shRNA against NOTCH3 resulted in a significant decrease in ALDH+ lung cancer cells, commensurate with a reduction in tumor cell proliferation and clonogenicity. Taken together, these findings indicate that ALDH selects for a subpopulation of self-renewing NSCLC stem-like cells with increased tumorigenic potential, that NSCLCs harboring tumor cells with ALDH1A1 expression have inferior prognosis, and that ALDH1A1 and CD133 identify different tumor subpopulations. Therapeutic targeting of the Notch pathway reduces this ALDH+ component, implicating Notch signaling in lung cancer stem cell maintenance. Cancer Res; 70(23); 9937–48. ©2010 AACR.

Usage metrics

    Cancer Research

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC