American Association for Cancer Research
Browse

Supplementary Figure 4 from Generation, Transcriptomic States, and Clinical Relevance of CX3CR1+ CD8 T Cells in Melanoma

Download (145.29 kB)
journal contribution
posted on 2025-03-28, 22:24 authored by Hirohito Ishigaki, Takayoshi Yamauchi, Mark D. Long, Toshifumi Hoki, Yuta Yamamoto, Takaaki Oba, Fumito Ito

Single-cell profiling of melanoma-infiltrating cells from patients treated with immune checkpoint inhibitor therapy in the Sade-Feldman et al. data

History

ARTICLE ABSTRACT

Recent progress in single-cell profiling technologies has revealed significant phenotypic and transcriptional heterogeneity in tumor-infiltrating CD8+ T cells. However, the transition between the different states of intratumoral antigen-specific CD8+ T cells remains elusive. Here, we sought to examine the generation, transcriptomic states, and the clinical relevance of melanoma-infiltrating CD8+ T cells expressing a chemokine receptor and T-cell differentiation marker, CX3C chemokine receptor 1 (CX3CR1). Analysis of single-cell datasets revealed distinct human melanoma-infiltrating CD8+ T-cell clusters expressing genes associated with effector T-cell function but with distinguishing expression of CX3CR1 or PDCD1. No obvious impact of CX3CR1 expression in melanoma on the response to immune checkpoint inhibitor therapy was observed while increased pretreatment and on-treatment frequency of a CD8+ T-cell cluster expressing high levels of exhaustion markers was associated with poor response to the treatment. Adoptively transferred antigen-specific CX3CR1− CD8+ T cells differentiated into the CX3CR1+ subset in mice treated with FTY720, which inhibits lymphocyte egress from secondary lymphoid tissues, suggesting the intratumoral generation of CX3CR1+ CD8+ T cells rather than their trafficking from secondary lymphoid organs. Furthermore, analysis of adoptively transferred antigen-specific CD8+ T cells, in which the Cx3cr1 gene was replaced with a marker gene confirmed that CX3CR1+ CD8+ T cells could directly differentiate from the intratumoral CX3CR1− subset. These findings highlight that tumor antigen–specific CX3CR1− CD8+ T cells can fully differentiate outside the secondary lymphoid organs and generate CX3CR1+ CD8+ T cells in the tumor microenvironment, which are distinct from CD8+ T cells that express markers of exhaustion. Intratumoral T cells are composed of heterogeneous subpopulations with various phenotypic and transcriptional states. This study illustrates the intratumoral generation of antigen-specific CX3CR1+ CD8+ T cells that exhibit distinct transcriptomic signatures and clinical relevance from CD8+ T cells expressing markers of exhaustion.

Usage metrics

    Cancer Research Communications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC