American Association for Cancer Research
Browse

Supplementary Figure 4 from Characterization of the Novel and Specific PI3Kα Inhibitor NVP-BYL719 and Development of the Patient Stratification Strategy for Clinical Trials

Download (60.38 kB)
journal contribution
posted on 2023-04-03, 14:09 authored by Christine Fritsch, Alan Huang, Christian Chatenay-Rivauday, Christian Schnell, Anupama Reddy, Manway Liu, Audrey Kauffmann, Daniel Guthy, Dirk Erdmann, Alain De Pover, Pascal Furet, Hui Gao, Stephane Ferretti, Youzhen Wang, Joerg Trappe, Saskia M. Brachmann, Sauveur-Michel Maira, Christopher Wilson, Markus Boehm, Carlos Garcia-Echeverria, Patrick Chene, Marion Wiesmann, Robert Cozens, Joseph Lehar, Robert Schlegel, Giorgio Caravatti, Francesco Hofmann, William R. Sellers

PDF - 60K, Linear correlation observed between tumor growth inhibition (% T/C) or tumor regression and the fraction of time over the in vivo S473P-Akt IC80 in different cancer cell line-derived tumor xenografts implanted in nude mice (represented as dots) and nude rats (represented as triangles) following NVP-BYL719 treatment (R2=0.77, p<0.001, n=27).

History

ARTICLE ABSTRACT

Somatic PIK3CA mutations are frequently found in solid tumors, raising the hypothesis that selective inhibition of PI3Kα may have robust efficacy in PIK3CA-mutant cancers while sparing patients the side-effects associated with broader inhibition of the class I phosphoinositide 3-kinase (PI3K) family. Here, we report the biologic properties of the 2-aminothiazole derivative NVP-BYL719, a selective inhibitor of PI3Kα and its most common oncogenic mutant forms. The compound selectivity combined with excellent drug-like properties translates to dose- and time-dependent inhibition of PI3Kα signaling in vivo, resulting in robust therapeutic efficacy and tolerability in PIK3CA-dependent tumors. Novel targeted therapeutics such as NVP-BYL719, designed to modulate aberrant functions elicited by cancer-specific genetic alterations upon which the disease depends, require well-defined patient stratification strategies in order to maximize their therapeutic impact and benefit for the patients. Here, we also describe the application of the Cancer Cell Line Encyclopedia as a preclinical platform to refine the patient stratification strategy for NVP-BYL719 and found that PIK3CA mutation was the foremost positive predictor of sensitivity while revealing additional positive and negative associations such as PIK3CA amplification and PTEN mutation, respectively. These patient selection determinants are being assayed in the ongoing NVP-BYL719 clinical trials. Mol Cancer Ther; 13(5); 1117–29. ©2014 AACR.

Usage metrics

    Molecular Cancer Therapeutics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC