American Association for Cancer Research
Browse
00085472can084841-sup-sfig_3.pdf (1.18 MB)

Supplementary Figure 3 from Plasminogen Kringle 5 Induces Apoptosis of Brain Microvessel Endothelial Cells: Sensitization by Radiation and Requirement for GRP78 and LRP1

Download (1.18 MB)
journal contribution
posted on 2023-03-30, 18:41 authored by Braden C. McFarland, Jerry Stewart, Amal Hamza, Robert Nordal, Donald J. Davidson, Jack Henkin, Candece L. Gladson
Supplementary Figure 3 from Plasminogen Kringle 5 Induces Apoptosis of Brain Microvessel Endothelial Cells: Sensitization by Radiation and Requirement for GRP78 and LRP1

History

ARTICLE ABSTRACT

Recombinant plasminogen kringle 5 (rK5) has been shown to induce apoptosis of dermal microvessel endothelial cells (MvEC) in a manner that requires glucose-regulated protein 78 (GRP78). As we are interested in antiangiogenic therapy for glioblastoma tumors, and the effectiveness of antiangiogenic therapy can be enhanced when combined with radiation, we investigated the proapoptotic effects of rK5 combined with radiation on brain MvEC. We found that rK5 treatment of brain MvEC induced apoptosis in a dose- and time-dependent manner and that prior irradiation significantly sensitized (500-fold) the cells to rK5-induced apoptosis. The rK5-induced apoptosis of both unirradiated and irradiated MvEC required expression of GRP78 and the low-density lipoprotein receptor-related protein 1 (LRP1), a scavenger receptor, based on down-regulation studies with small interfering RNA, and blocking studies with either a GRP78 antibody or a competitive inhibitor of ligand binding to LRP1. Furthermore, p38 mitogen-activated protein kinase was found to be a necessary downstream effector for rK5-induced apoptosis. These data suggest that irradiation sensitizes brain MvEC to the rK5-induced apoptosis and that this signal requires LRP1 internalization of GRP78 and the activation of p38 mitogen-activated protein kinase. Our findings suggest that prior irradiation would have a dose-sparing effect on rK5 antiangiogenic therapy for brain tumors and further suggest that the effects of rK5 would be tumor specific, as the expression of GRP78 protein is up-regulated on the brain MvEC in glioblastoma tumor biopsies compared with the normal brain. [Cancer Res 2009;69(13):5537–45]

Usage metrics

    Cancer Research

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC