American Association for Cancer Research
Browse
00085472can113024-sup-fig3.pdf (323.81 kB)

Supplementary Figure 3 from Modulation of Glucose Metabolism by CD44 Contributes to Antioxidant Status and Drug Resistance in Cancer Cells

Download (323.81 kB)
journal contribution
posted on 2023-03-30, 21:02 authored by Mayumi Tamada, Osamu Nagano, Seiji Tateyama, Mitsuyo Ohmura, Toshifumi Yae, Takatsugu Ishimoto, Eiji Sugihara, Nobuyuki Onishi, Takehiro Yamamoto, Hiroshi Yanagawa, Makoto Suematsu, Hideyuki Saya

PDF file - 324K

History

ARTICLE ABSTRACT

An increased glycolytic flux accompanied by activation of the pentose phosphate pathway (PPP) is implicated in chemoresistance of cancer cells. In this study, we found that CD44, a cell surface marker for cancer stem cells, interacts with pyruvate kinase M2 (PKM2) and thereby enhances the glycolytic phenotype of cancer cells that are either deficient in p53 or exposed to hypoxia. CD44 ablation by RNA interference increased metabolic flux to mitochondrial respiration and concomitantly inhibited entry into glycolysis and the PPP. Such metabolic changes induced by CD44 ablation resulted in marked depletion of cellular reduced glutathione (GSH) and increased the intracellular level of reactive oxygen species in glycolytic cancer cells. Furthermore, CD44 ablation enhanced the effect of chemotherapeutic drugs in p53-deficient or hypoxic cancer cells. Taken together, our findings suggest that metabolic modulation by CD44 is a potential therapeutic target for glycolytic cancer cells that manifest drug resistance. Cancer Res; 72(6); 1438–48. ©2012 AACR.

Usage metrics

    Cancer Research

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC