American Association for Cancer Research
Browse
- No file added yet -

Supplementary Figure 3 from Identification of ASF/SF2 as a Critical, Allele-Specific Effector of the Cyclin D1b Oncogene

Download (22.76 kB)
journal contribution
posted on 2023-03-30, 19:30 authored by Nicholas A. Olshavsky, Clay E.S. Comstock, Matthew J. Schiewer, Michael A. Augello, Terry Hyslop, Claudio Sette, Jinsong Zhang, Linda M. Parysek, Karen E. Knudsen
Supplementary Figure 3 from Identification of ASF/SF2 as a Critical, Allele-Specific Effector of the Cyclin D1b Oncogene

History

ARTICLE ABSTRACT

The cyclin D1b oncogene arises from alternative splicing of the CCND1 transcript, and harbors markedly enhanced oncogenic functions not shared by full-length cyclin D1 (cyclin D1a). Recent studies showed that cyclin D1b is selectively induced in a subset of tissues as a function of tumorigenesis; however, the underlying mechanism(s) that control tumor-specific cyclin D1b induction remain unsolved. Here, we identify the RNA-binding protein ASF/SF2 as a critical, allele-specific, disease-relevant effector of cyclin D1b production. Initially, it was observed that SF2 associates with cyclin D1b mRNA (transcript-b) in minigene analyses and with endogenous transcript in prostate cancer (PCa) cells. SF2 association was altered by the CCND1 G/A870 polymorphism, which resides in the splice donor site controlling transcript-b production. This finding was significant, as the A870 allele promotes cyclin D1b in benign prostate tissue, but in primary PCa, cyclin D1b production is independent of A870 status. Data herein provide a basis for this disparity, as tumor-associated induction of SF2 predominantly results in binding to and accumulation of G870-derived transcript-b. Finally, the relevance of SF2 function was established, as SF2 strongly correlated with cyclin D1b (but not cyclin D1a) in human PCa. Together, these studies identify a novel mechanism by which cyclin D1b is induced in cancer, and reveal significant evidence of a factor that cooperates with a risk-associated polymorphism to alter cyclin D1 isoform production. Identification of SF2 as a disease-relevant effector of cyclin D1b provides a basis for future studies designed to suppress the oncogenic alternative splicing event. Cancer Res; 70(10); 3975–84. ©2010 AACR.

Usage metrics

    Cancer Research

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC