American Association for Cancer Research
Browse
15357163mct130772-sup-fig2.pdf (11.63 kB)

Supplementary Figure 2 from Interferon-β Induces Loss of Spherogenicity and Overcomes Therapy Resistance of Glioblastoma Stem Cells

Download (11.63 kB)
journal contribution
posted on 2023-04-03, 14:05 authored by Caroline Happold, Patrick Roth, Manuela Silginer, Ana-Maria Florea, Katrin Lamszus, Karl Frei, Rene Deenen, Guido Reifenberger, Michael Weller

PDF file - 20KB, Affymetrix gene expression.

History

ARTICLE ABSTRACT

Glioblastoma is the most common malignant brain tumor in adults and characterized by a poor prognosis. Glioma cells expressing O6-methylguanine DNA methyltransferase (MGMT) exhibit a higher level of resistance toward alkylating agents, including the standard of care chemotherapeutic agent temozolomide. Here, we demonstrate that long-term glioma cell lines (LTL) as well as glioma-initiating cell lines (GIC) express receptors for the immune modulatory cytokine IFN-β and respond to IFN-β with induction of STAT-3 phosphorylation. Exposure to IFN-β induces a minor loss of viability, but strongly interferes with sphere formation in GIC cultures. Furthermore, IFN-β sensitizes LTL and GIC to temozolomide and irradiation. RNA interference confirmed that both IFN-β receptors, R1 and R2, are required for IFN-β–mediated sensitization, but that sensitization is independent of MGMT or TP53. Most GIC lines are highly temozolomide-resistant, mediated by MGMT expression, but nevertheless susceptible to IFN-β sensitization. Gene expression profiling following IFN-β treatment revealed strong upregulation of IFN-β–associated genes, including a proapoptotic gene cluster, but did not alter stemness-associated expression signatures. Caspase activity and inhibition studies revealed the proapoptotic genes to mediate glioma cell sensitization to exogenous death ligands by IFN-β, but not to temozolomide or irradiation, indicating distinct pathways of death sensitization mediated by IFN-β. Thus, IFN-β is a potential adjunct to glioblastoma treatment that may target the GIC population. IFN-β operates independently of MGMT-mediated resistance, classical apoptosis-regulatory networks, and stemness-associated gene clusters. Mol Cancer Ther; 13(4); 948–61. ©2014 AACR.