American Association for Cancer Research
00085472can130588-sup-fig2.pdf (76 kB)

Supplementary Figure 2 from Inducible Nitric Oxide Synthase Drives mTOR Pathway Activation and Proliferation of Human Melanoma by Reversible Nitrosylation of TSC2

Download (76 kB)
journal contribution
posted on 2023-03-30, 22:27 authored by Esther Lopez-Rivera, Padmini Jayaraman, Falguni Parikh, Michael A. Davies, Suhendan Ekmekcioglu, Sudeh Izadmehr, Denái R. Milton, Jerry E. Chipuk, Elizabeth A. Grimm, Yeriel Estrada, Julio Aguirre-Ghiso, Andrew G. Sikora

PDF file - 76K, In MT-RET-1 mouse melanoma cell line we transient trafected with with siRNA-iNOS human, after 48 hours MT-RET-1 mouse cell lysate were subjected to SDS-PAGE and western blot analysis for iNOS, and actin as a loading control.



Melanoma is one of the cancers of fastest-rising incidence in the world. Inducible nitric oxide synthase (iNOS) is overexpressed in melanoma and other cancers, and previous data suggest that iNOS and nitric oxide (NO) drive survival and proliferation of human melanoma cells. However, specific mechanisms through which this occurs are poorly defined. One candidate is the PI3K–AKT–mTOR pathway, which plays a major role in proliferation, angiogenesis, and metastasis of melanoma and other cancers. We used the chick embryo chorioallantoic membrane (CAM) assay to test the hypothesis that melanoma growth is regulated by iNOS-dependent mTOR pathway activation. Both pharmacologic inhibition and siRNA-mediated gene silencing of iNOS suppressed melanoma proliferation and in vivo growth on the CAM in human melanoma models. This was associated with strong downregulation of mTOR pathway activation by Western blot analysis of p-mTOR, p70 ribosomal S6 kinase (p-P70S6K), p-S6RP, and p-4EBP1. iNOS expression and NO were associated with reversible nitrosylation of tuberous sclerosis complex (TSC) 2, and inhibited dimerization of TSC2 with its inhibitory partner TSC1, enhancing GTPase activity of its target Ras homolog enriched in brain (Rheb), a critical activator of mTOR signaling. Immunohistochemical analysis of tumor specimens from stage III melanoma patients showed a significant correlation between iNOS expression levels and expression of the mTOR pathway members. Exogenously supplied NO was also sufficient to reverse the mTOR pathway inhibition by the B-Raf inhibitor vemurafenib. In summary, covalent modification of TSC2 by iNOS-derived NO is associated with impaired TSC2/TSC1 dimerization, mTOR pathway activation, and proliferation of human melanoma. This model is consistent with the known association of iNOS overexpression and poor prognosis in melanoma and other cancers. Cancer Res; 74(4); 1067–78. ©2014 AACR.

Usage metrics

    Cancer Research



    Ref. manager