Supplementary Figure 1 from Fusobacterium in Colonic Flora and Molecular Features of Colorectal Carcinoma
journal contribution
posted on 2023-03-30, 22:24 authored by Tomomitsu Tahara, Eiichiro Yamamoto, Hiromu Suzuki, Reo Maruyama, Woonbok Chung, Judith Garriga, Jaroslav Jelinek, Hiro-o Yamano, Tamotsu Sugai, Byonggu An, Imad Shureiqi, Minoru Toyota, Yutaka Kondo, Marcos R.H. Estécio, Jean-Pierre J. IssaPDF file - 72K, Venn diagrams showing the proportion of tumor (a) and normal (b) cases where F.nucleatum and Pan-fusobacterium were detected.
History
ARTICLE ABSTRACT
Fusobacterium species are part of the gut microbiome in humans. Recent studies have identified overrepresentation of Fusobacterium in colorectal cancer tissues, but it is not yet clear whether this is pathogenic or simply an epiphenomenon. In this study, we evaluated the relationship between Fusobacterium status and molecular features in colorectal cancers through quantitative real-time PCR in 149 colorectal cancer tissues, 89 adjacent normal appearing mucosae and 72 colonic mucosae from cancer-free individuals. Results were correlated with CpG island methylator phenotype (CIMP) status, microsatellite instability (MSI), and mutations in BRAF, KRAS, TP53, CHD7, and CHD8. Whole-exome capture sequencing data were also available in 11 cases. Fusobacterium was detectable in 111 of 149 (74%) colorectal cancer tissues and heavily enriched in 9% (14/149) of the cases. As expected, Fusobacterium was also detected in normal appearing mucosae from both cancer and cancer-free individuals, but the amount of bacteria was much lower compared with colorectal cancer tissues (a mean of 250-fold lower for Pan-fusobacterium). We found the Fusobacterium-high colorectal cancer group (FB-high) to be associated with CIMP positivity (P = 0.001), TP53 wild-type (P = 0.015), hMLH1 methylation positivity (P = 0.0028), MSI (P = 0.018), and CHD7/8 mutation positivity (P = 0.002). Among the 11 cases where whole-exome sequencing data were available, two that were FB-high cases also had the highest number of somatic mutations (a mean of 736 per case in FB-high vs. 225 per case in all others). Taken together, our findings show that Fusobacterium enrichment is associated with specific molecular subsets of colorectal cancers, offering support for a pathogenic role in colorectal cancer for this gut microbiome component. Cancer Res; 74(5); 1311–8. ©2014 AACR.Usage metrics
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC