American Association for Cancer Research
Browse

Supplementary Figure 1 from Schedule-Dependent Synergy between the Heat Shock Protein 90 Inhibitor 17-(Dimethylaminoethylamino)-17-Demethoxygeldanamycin and Doxorubicin Restores Apoptosis to p53-Mutant Lymphoma Cell Lines

Download (98.46 kB)
journal contribution
posted on 2023-03-31, 16:01 authored by Ana I. Robles, Mollie H. Wright, Bheru Gandhi, Steven S. Feis, Christin L. Hanigan, Adrian Wiestner, Lyuba Varticovski
Supplementary Figure 1 from Schedule-Dependent Synergy between the Heat Shock Protein 90 Inhibitor 17-(Dimethylaminoethylamino)-17-Demethoxygeldanamycin and Doxorubicin Restores Apoptosis to p53-Mutant Lymphoma Cell Lines

History

ARTICLE ABSTRACT

Purpose: Loss of p53 function impairs apoptosis induced by DNA-damaging agents used for cancer therapy. Here, we examined the effect of the heat shock protein 90 (HSP90) inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (DMAG) on doxorubicin-induced apoptosis in lymphoma. We aimed to establish the optimal schedule for administration of both drugs in combination and the molecular basis for their interaction.Experimental Design: Isogenic lymphoblastoid and nonisogenic lymphoma cell lines differing in p53 status were exposed to each drug or combination. Drug effects were examined using Annexin V, active caspase-3, cell cycle, and cytotoxicity assays. Synergy was evaluated by median effect/combination index. Protein expression and kinase inhibition provided insight into the molecular mechanisms of drug interaction.Results: Presence of mutant p53 conferred increased survival to single agents. Nevertheless, DMAG showed synergistic toxicity with doxorubicin independently of p53 status. Synergy required exposure to doxorubicin before DMAG. DMAG-mediated down-regulation of CHK1, a known HSP90 client, forced doxorubicin-treated cells into premature mitosis followed by apoptosis. A CHK1 inhibitor, SB-218078, reproduced the effect of DMAG. Administration of DMAG before doxorubicin resulted in G1-S arrest and protection from apoptosis, leading to additive or antagonistic interactions that were exacerbated by p53 mutation.Conclusions: Administration of DMAG to doxorubicin-primed cells induced premature mitosis and had a synergistic effect on apoptosis regardless of p53 status. These observations provide a rationale for prospective clinical trials and stress the need to consider schedule of exposure as a critical determinant of the overall response when DMAG is combined with chemotherapeutic agents for the treatment of patients with relapsed/refractory disease.

Usage metrics

    Clinical Cancer Research

    Categories

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC