American Association for Cancer Research
Browse
00085472can091059-sup-sfig_1.pdf (180.8 kB)

Supplementary Figure 1 from A Genetic Variant of Aurora Kinase A Promotes Genomic Instability Leading to Highly Malignant Skin Tumors

Download (180.8 kB)
journal contribution
posted on 2023-03-30, 18:45 authored by Enrique C. Torchia, Yiyun Chen, Hong Sheng, Hiroshi Katayama, James Fitzpatrick, William R. Brinkley, Carlos Caulin, Subrata Sen, Dennis R. Roop
Supplementary Figure 1 from A Genetic Variant of Aurora Kinase A Promotes Genomic Instability Leading to Highly Malignant Skin Tumors

History

ARTICLE ABSTRACT

Aurora kinase A (Aurora-A) belongs to a highly conserved family of mitotis-regulating serine/threonine kinases implicated in epithelial cancers. Initially we examined Aurora-A expression levels at different stages of human skin cancer. Nuclear Aurora-A was detected in benign lesions and became more diffused but broadly expressed in well and poorly differentiated squamous cell carcinomas (SCC), indicating that Aurora-A deregulation may contribute to SCC development. To mimic the overexpression of Aurora-A observed in human skin cancers, we established a gene-switch mouse model in which the human variant of Aurora-A (Phe31Ile) was expressed in the epidermis upon topical application of the inducer RU486 (Aurora-AGS). Overexpression of Aurora-A alone or in combination with the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA), did not result in SCC formation in Aurora-AGS mice. Moreover, Aurora-A overexpression in naive keratinocytes resulted in spindle defects in vitro and marked cell death in vivo, suggesting that the failure of Aurora-A to initiate tumorigenesis was due to induction of catastrophic cell death. However, Aurora-A overexpression combined with exposure to TPA and the mutagen 7,12-dimethylbenz(a)anthracene accelerated SCC development with greater metastastic activity than control mice, indicating that Aurora-A cannot initiate skin carcinogenesis but rather promotes the malignant conversion of skin papillomas. Further characterization of SCCs revealed centrosome amplification and genomic alterations by array CGH analysis, indicating that Aurora-A overexpression induces a high level of genomic instability that favors the development of aggressive and metastatic tumors. Our findings strongly implicate Aurora-A overexpression in the malignant progression of skin tumors and suggest that Aurora-A may be an important therapeutic target. [Cancer Res 2009;69(18):7207–15]

Usage metrics

    Cancer Research

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC