American Association for Cancer Research
Browse
00085472can181733-sup-203133_2_supp_5092949_ph04vp.pdf (758.98 kB)

Supplementary Figure5 from Temozolomide Induces Senescence and Repression of DNA Repair Pathways in Glioblastoma Cells via Activation of ATR–CHK1, p21, and NF-κB

Download (758.98 kB)
journal contribution
posted on 2023-03-31, 02:22 authored by Dorthe Aasland, Laura Götzinger, Laura Hauck, Nancy Berte, Jessica Meyer, Melanie Effenberger, Simon Schneider, Emelie E. Reuber, Wynand P. Roos, Maja T. Tomicic, Bernd Kaina, Markus Christmann

Impact of NfkB on senescence and mRNA expression of IL6, IL8, c-IAP2, BclXL, XIAP and Survivin.

Funding

Wilhelm Sander-Stiftung

DFG

German Cancer Aid

History

ARTICLE ABSTRACT

The DNA-methylating drug temozolomide, which induces cell death through apoptosis, is used for the treatment of malignant glioma. Here, we investigate the mechanisms underlying the ability of temozolomide to induce senescence in glioblastoma cells. Temozolomide-induced senescence was triggered by the specific DNA lesion O6-methylguanine (O6MeG) and characterized by arrest of cells in the G2–M phase. Inhibitor experiments revealed that temozolomide-induced senescence was initiated by damage recognition through the MRN complex, activation of the ATR/CHK1 axis of the DNA damage response pathway, and mediated by degradation of CDC25c. Temozolomide-induced senescence required functional p53 and was dependent on sustained p21 induction. p53-deficient cells, not expressing p21, failed to induce senescence, but were still able to induce a G2–M arrest. p14 and p16, targets of p53, were silenced in our cell system and did not seem to play a role in temozolomide-induced senescence. In addition to p21, the NF-κB pathway was required for senescence, which was accompanied by induction of the senescence-associated secretory phenotype. Upon temozolomide exposure, we found a strong repression of the mismatch repair proteins MSH2, MSH6, and EXO1 as well as the homologous recombination protein RAD51, which was downregulated by disruption of the E2F1/DP1 complex. Repression of these repair factors was not observed in G2–M arrested p53-deficient cells and, therefore, it seems to represent a specific trait of temozolomide-induced senescence. These findings reveal a mechanism by which the anticancer drug temozolomide induces senescence and downregulation of DNA repair pathways in glioma cells.