American Association for Cancer Research
Browse
- No file added yet -

Supplementary Fig. S20 from Orchestrated Codelivery of Peptide Antigen and Adjuvant to Antigen-Presenting Cells by Using an Engineered Chimeric Peptide Enhances Antitumor T-Cell Immunity

Download (729.03 kB)
journal contribution
posted on 2024-07-02, 07:41 authored by Haifeng Pan, Siyuan Yu, Haoyun Zhuang, Han Yang, Jinlu Jiang, Haihui Yang, Shuling Ren, Guoxing Luo, Xuan Yu, Shuping Chen, Yanhua Lin, Roufang Sheng, Shiyin Zhang, Quan Yuan, Chenghao Huang, Tianying Zhang, Tingdong Li, Shengxiang Ge, Jun Zhang, Ningshao Xia

Supplementary Fig. S20. Analysis of PD-1 expression level on the surface of CD8+ T cells in TME.

Funding

the National Natural Science Foundation of China

the Key Program of Science and Technology of Fujian Province, China

the Medical Research Program of Fujian Provincial Health Commission

CAMS Innovation Fund for Medical Science

the Fundamental Research Funds for the Central Universities

History

ARTICLE ABSTRACT

The intrinsic pharmacokinetic limitations of traditional peptide-based cancer vaccines hamper effective cross-presentation and codelivery of antigens (Ag) and adjuvants, which are crucial for inducing robust antitumor CD8+ T-cell responses. In this study, we report the development of a versatile strategy that simultaneously addresses the different pharmacokinetic challenges of soluble subunit vaccines composed of Ags and cytosine-guanosine oligodeoxynucleotide (CpG) to modulate vaccine efficacy via translating an engineered chimeric peptide, eTAT, as an intramolecular adjuvant. Linking Ags to eTAT enhanced cytosolic delivery of the Ags. This, in turn, led to improved activation and lymph node–trafficking of Ag-presenting cells and Ag cross-presentation, thus promoting Ag-specific T-cell immune responses. Simple mixing of eTAT-linked Ags and CpG significantly enhanced codelivery of Ags and CpG to the Ag-presenting cells, and this substantially augmented the adjuvant effect of CpG, maximized vaccine immunogenicity, and elicited robust and durable CD8+ T-cell responses. Vaccination with this formulation altered the tumor microenvironment and exhibited potent antitumor effects, with generally further enhanced therapeutic efficacy when used in combination with anti-PD1. Altogether, the engineered chimeric peptide–based orchestrated codelivery of Ag and adjuvant may serve as a promising but simple strategy to improve the efficacy of peptide-based cancer vaccines.