American Association for Cancer Research
21598290cd201285-sup-250722_2_supp_7087933_qsd0jd.pdf (16.99 MB)

Supplementary Fig S1-S7 from Resolving the Spatial and Cellular Architecture of Lung Adenocarcinoma by Multiregion Single-Cell Sequencing

Download (16.99 MB)
journal contribution
posted on 2023-04-03, 23:26 authored by Ansam Sinjab, Guangchun Han, Warapen Treekitkarnmongkol, Kieko Hara, Patrick M. Brennan, Minghao Dang, Dapeng Hao, Ruiping Wang, Enyu Dai, Hitoshi Dejima, Jiexin Zhang, Elena Bogatenkova, Beatriz Sanchez-Espiridion, Kyle Chang, Danielle R. Little, Samer Bazzi, Linh M. Tran, Kostyantyn Krysan, Carmen Behrens, Dzifa Y. Duose, Edwin R. Parra, Maria Gabriela Raso, Luisa M. Solis, Junya Fukuoka, Jianjun Zhang, Boris Sepesi, Tina Cascone, Lauren Averett Byers, Don L. Gibbons, Jichao Chen, Seyed Javad Moghaddam, Edwin J. Ostrin, Daniel Rosen, John V. Heymach, Paul Scheet, Steven M. Dubinett, Junya Fujimoto, Ignacio I. Wistuba, Christopher S. Stevenson, Avrum Spira, Linghua Wang, Humam Kadara

Supplementary Figures S1-S7 and figure legends


Johnson and Johnson


University of Texas SPORE in Lung Cancer


Cancer Prevention and Research Institute of Texas



Little is known of the geospatial architecture of individual cell populations in lung adenocarcinoma (LUAD) evolution. Here, we perform single-cell RNA sequencing of 186,916 cells from five early-stage LUADs and 14 multiregion normal lung tissues of defined spatial proximities from the tumors. We show that cellular lineages, states, and transcriptomic features geospatially evolve across normal regions to LUADs. LUADs also exhibit pronounced intratumor cell heterogeneity within single sites and transcriptional lineage-plasticity programs. T regulatory cell phenotypes are increased in normal tissues with proximity to LUAD, in contrast to diminished signatures and fractions of cytotoxic CD8+ T cells, antigen-presenting macrophages, and inflammatory dendritic cells. We further find that the LUAD ligand–receptor interactome harbors increased expression of epithelial CD24, which mediates protumor phenotypes. These data provide a spatial atlas of LUAD evolution, and a resource for identification of targets for its treatment. The geospatial ecosystem of the peripheral lung and early-stage LUAD is not known. Our multiregion single-cell sequencing analyses unravel cell populations, states, and phenotypes in the spatial and ecologic evolution of LUAD from the lung that comprise high-potential targets for early interception.This article is highlighted in the In This Issue feature, p. 2355

Usage metrics

    Cancer Discovery



    Ref. manager