## Supplemental data file

## Inherent limitations of rare event detection <sup>1-3</sup>

Three principle issues in rare event detection were evaluated. First, what is the lowest number of CTC that would need to be in a tube of blood to detect one CTC? Second, what is the theoretical level of variability in measuring the reproducibility of rare events based on a random distribution? Third, if one obtains a given result in clinical practice, what is the range of CTC numbers that might have actually been in the tube based on statistical considerations?

The probability of a random sample of size *n* containing *x* events in a total of n tests using the *binomial distribution* is given by the following formula:

$$P(x) = \frac{n!}{x!(n-x!)} p^{x}(1-p)^{n-x} = \binom{n}{x} p^{x}(1-p)^{n-x}$$

Where: P(x) = the probability of an event (x) in a unit of space x = number of events p = probability of detecting (or observing) x events 1 - p = probability of not detecting (or observing) x events n = sample size

The mean  $\mu$  and variance  $\sigma^2$  of the binomial distribution are given by the following:

$$\mu = np$$
 and  $\sigma^2 = np(1-p)$ 

The minimum average number of CTCs (*n*) required to be present in a single 7.5mL sample of blood to ensure the detection on average of at least 1 CTC ( $\mu$ ) given an average assay recovery of CTCs spiked into 7.5mL of blood of ~85% (*p*), is therefore:

$$\mu = np$$
  
1 = n(85%)  
n = 1 / 0.85 ~= 1.2 CTC

The standard deviation  $\sigma$  for this value of *n* would be determined as follows:

$$\sigma = \sqrt{np(1-p)} = \sqrt{1.2*0.85(1-0.85)} = 0.4$$

These results indicate that in order to detect on average 1 CTC with an average assay recovery of 85%, a 7.5mL blood sample would have to contain on average 1.2 CTCs.

For CTC detection, imagine a volume of blood that has been divided into CTC size units. This creates a very large sample size n, with a very small probability p of any single volume n containing an event x (i.e. a CTC). In this situation, with a large n and a small p, the *Poisson distribution* can be used to approximate the binomial probability. The *Poisson distribution* is important in describing random (or rare) occurrences where each sample (or volume) n has an equal probability of containing an event x, such as is the case with the distribution of CTC in a volume of blood.

The probability of a random sample of size *n* containing *x* events can be calculated using the *Poisson distribution* and is given by the following formula:

$$\mathsf{P}(\mathbf{x}) = \frac{e^{-\mu}\mu^{x}}{x!}$$

An interesting and useful property of a *Poisson distribution* is that the variance  $\sigma^2$  is equal to the mean  $\mu$ . This would make the standard deviation equal to  $\sqrt{\mu}$ , and the

 $\sqrt{\mu}$ 

theoretical coefficient of variation (%CV) equal to  $~^{\mu}~$  .

Using the above %CV formula, at CTC counts of 4, 18, 71, 286, and 1142, the inherent %CVs of actually counting those numbers of events would be predicted to be 50%, 24%, 12%, 6%, and 3%, respectively. These predicted %CVs are very similar to the observed %CVs of 47%, 22%, 11%, 2%, and 5%, respectively, shown in **Table 1**. These findings suggest that the CellSearch assay does not add additional variation to the inherent variation of counting random events due to the *Poisson distribution*.

When calculating confidence intervals (CI) for rare events (i.e. CTC counts), one must keep in mind that the *Poisson distribution* assumes the shape of a *normal distribution* when the number of events is greater than about 100. So we use a *Poisson distribution* for rare events (when the number of events is less than 100), but when the number of events is greater than 100, we can use a modified formula from the *normal distribution* to determine the 95% CI's.

**Table 2** provides the lower and upper *confidence factors* used to calculate an exact 95% CI based on a specified number of events (or counts), from 1 to 100. To calculate the exact 95% CI, multiply the number of events (or counts) by the associated *confidence factors* and add these values separately to the count. For example, in **Table 1**, the average observed number of CTC at the 18 CTC spike was 22 CTC (122% recovery). The lower and upper confidence limits are calculated using the *confidence factors* provided in **Table 2**. The factors for 22 events are 0.6267 and 1.5140 for the lower and upper limits of the 95% CI, respectively. Therefore, the exact 95% CI for the average CTC count of 22 would be:

Lower limit = 22(0.6267) = 13.8 Upper limit = 22(1.5140) = 33.3 Thus, for the average % recovery of 122% (22 / 18 CTC) Lower limit = (14 / 18) \* 100% = 77.7% Upper limit = (33 / 18) \* 100% = 183.3% 95% C.I. for average of 122% recovery = 78% to 183%

The formula for the calculation of an approximate 95% CI for a *Poisson distribution* with more than 100 counts  $\mu$  is:

Approximate C.I. = 
$$\mu \pm z_{\alpha} \sqrt{\mu}$$

Where:  $z_{\alpha} = 1.645$  for a 90% CI, 1.96 for a 95% CI, or 2.58 for a 99% CI

Lastly, similar considerations apply to the issue of estimating the range of CTC numbers when a given number is measured by the assay. Recall that for a *Poisson distribution* the variance  $\sigma^2$  is equal to the mean  $\mu$ , which would make the standard

deviation equal to the square root of the mean  $\sigma = \sqrt{\mu}$ . For a sample size of n=1,  $\sigma$  is indeterminate, as we have no knowledge of  $\sigma$  from a single determination  $(x_1)$ . Although  $\sigma$  is unknown, it is possible to determine the true mean value  $\mu$  within a certain confidence interval  $[\mu_1, \mu_2]$ . For  $n \to \infty$ , a *Poisson distribution* with a mean  $\mu$  and standard deviation  $\sigma$  is known. If we take one sample from this distribution (n=1), this sample will contain  $x_1$  number of CTCs. If we assume that this sample falls within a given confidence interval  $(z_{\alpha})$ , the true average falls within  $[\mu_1, \mu_2]$  with the same given confidence, if  $\mu_1$  and  $\mu_2$  are defined as follows:

$$x_1 = \mu_1 - z_{\alpha} \sqrt{\mu_1}$$
 and  $x_1 = \mu_2 + z_{\alpha} \sqrt{\mu_2}$ 

when you solve the above equation for  $\mu_1$  and  $\mu_2$ , you get

$$\mu_{1} = (x_{1} + z_{\alpha}) - \frac{\sqrt{(2z_{\alpha} + 2x_{1})^{2} - 4x_{1}^{2}}}{2}$$
$$\mu_{2} = (x_{1} + z_{\alpha}) + \frac{\sqrt{(2z_{\alpha} + 2x_{1})^{2} - 4x_{1}^{2}}}{2}$$

**Figure 1** shows  $\mu_1$  and  $\mu_2$  for a 95% CI ( $z_{\alpha} = 1.96$ , solid line), the 68% CI ( $z_{\alpha} = 1.00$ , short dashed line), and the 38% CI ( $z_{\alpha} = 0.50$ , long dashed line) for  $x_1$  values of 0 to 25 CTC. The range of the true average,  $\mu$ , based on a single blood draw resulting in  $x_1$  number of CTC, can be read from **Figure 1** with 38%, 68%, and 95% confidence. For example when 5 CTC are detected ( $x_1$ =5), you can be 95% confident that the true average lies between the 2 and 12 CTC, 68% confident that the true average lies between 3 and 9 CTC, and 38% confident that the true average lies between 3 and 8 CTC.

## REFERENCES

- 1. Motulsky, H. Intuitive Biostatistics, pp. 245-249. New York: Oxford University Press, 1995.
- Box, G.E.P., Hunter, W.G., and Hunter, J.S. Statistics for experimenters. An introduction to design, data analysis, and model building, pp. 137-145. New York: John Wiley and Sons, 1978.
- 3. Daly, L. Simple SAS macros for the calculation of exact binomial and Poisson confidence limits. Comput. Biol. Med., *22*: 351-361, 1992.

Table 1. Method accuracy measured by recovery of SKBR-3 tumor cells spikedinto 7.5 mL blood of 5 healthy donors

| Expected         | Obser   | ved CTC | C Count    | % Recovery |          | 0/ CV       |
|------------------|---------|---------|------------|------------|----------|-------------|
| <b>CTC Count</b> | Average | StDev   | 95% C.I.   | Average    | 95% C.I. | 76 <b>U</b> |
| 4                | 4       | 2       | 1 - 11     | 110        | 25 - 275 | 47          |
| 18               | 22      | 5       | 14 - 33    | 122        | 78 - 183 | 22          |
| 71               | 70      | 8       | 55 - 88    | 99         | 77 - 124 | 11          |
| 286              | 247     | 5       | 216 - 277  | 86         | 76 - 97  | 2           |
| 1142             | 971     | 46      | 910 - 1032 | 85         | 80 - 90  | 5           |

| number of<br>events | 95% CI, Lower<br>Limit Factor | 95% CI, Upper<br>Limit Factor | number of<br>events | 95% CI, Lower<br>Limit Factor | 95% CI, Upper<br>Limit Factor |
|---------------------|-------------------------------|-------------------------------|---------------------|-------------------------------|-------------------------------|
| 0                   | 0.0000                        | 3.7000                        | 51                  | 0.7446                        | 1.3148                        |
| 1                   | 0.0253                        | 5.5716                        | 52                  | 0.7468                        | 1.3114                        |
| 2                   | 0.1211                        | 3.6123                        | 53                  | 0.7491                        | 1.3080                        |
| 3                   | 0.2062                        | 2.9224                        | 54                  | 0.7512                        | 1.3048                        |
| 4                   | 0.2725                        | 2.5604                        | 55                  | 0.7533                        | 1.3016                        |
| 5                   | 0.3247                        | 2.3337                        | 56                  | 0.7554                        | 1.2986                        |
| 6                   | 0.3670                        | 2.1766                        | 57                  | 0.7574                        | 1.2956                        |
| 7                   | 0.4021                        | 2.0604                        | 58                  | 0.7593                        | 1.2927                        |
| 8                   | 0.4317                        | 1.9704                        | 59                  | 0.7612                        | 1.2899                        |
| 9                   | 0.4573                        | 1.8983                        | 60                  | 0.7631                        | 1.2872                        |
| 10                  | 0.4795                        | 1.8390                        | 61                  | 0.7649                        | 1.2845                        |
| 11                  | 0.4992                        | 1.7893                        | 62                  | 0.7667                        | 1.2820                        |
| 12                  | 0.5167                        | 1.7468                        | 63                  | 0.7684                        | 1.2794                        |
| 13                  | 0.5325                        | 1.7100                        | 64                  | 0.7701                        | 1.2770                        |
| 14                  | 0.5467                        | 1.6778                        | 65                  | 0.7718                        | 1.2746                        |
| 15                  | 0.5597                        | 1.6493                        | 66                  | 0.7734                        | 1.2722                        |
| 16                  | 0.5716                        | 1.6239                        | 67                  | 0.7750                        | 1.2700                        |
| 17                  | 0.5825                        | 1.6011                        | 68                  | 0.7765                        | 1.2677                        |
| 18                  | 0.5927                        | 1.5804                        | 69                  | 0.7781                        | 1.2656                        |
| 19                  | 0.6021                        | 1.5616                        | 70                  | 0.7795                        | 1.2634                        |
| 20                  | 0.6108                        | 1.5444                        | 71                  | 0.7810                        | 1.2614                        |
| 21                  | 0.6190                        | 1.5286                        | 72                  | 0.7824                        | 1.2593                        |
| 22                  | 0.6267                        | 1.5140                        | 73                  | 0.7838                        | 1.2573                        |
| 23                  | 0.6339                        | 1.5005                        | 74                  | 0.7852                        | 1.2554                        |
| 24                  | 0.6407                        | 1.4879                        | 75                  | 0.7866                        | 1.2535                        |
| 25                  | 0.6471                        | 1.4762                        | 76                  | 0.7879                        | 1.2516                        |
| 26                  | 0.6532                        | 1.4652                        | 77                  | 0.7892                        | 1.2498                        |
| 27                  | 0.6590                        | 1.4549                        | 78                  | 0.7905                        | 1.2480                        |
| 28                  | 0.6645                        | 1.4453                        | 79                  | 0.7917                        | 1.2463                        |
| 29                  | 0.6697                        | 1.4362                        | 80                  | 0.7929                        | 1.2446                        |
| 30                  | 0.6747                        | 1.4276                        | 81                  | 0.7941                        | 1.2429                        |
| 31                  | 0.6795                        | 1.4194                        | 82                  | 0.7953                        | 1.2413                        |
| 32                  | 0.6840                        | 1.4117                        | 83                  | 0.7965                        | 1.2397                        |
| 33                  | 0.6884                        | 1.4044                        | 84                  | 0.7976                        | 1.2381                        |

 Table 2. 95% Confidence Interval Factors for Poisson-Distributed Events

| number of<br>events | 95% CI, Lower<br>Limit Factor | 95% CI, Upper<br>Limit Factor | number of<br>events | 95% CI, Lower<br>Limit Factor | 95% CI, Upper<br>Limit Factor |
|---------------------|-------------------------------|-------------------------------|---------------------|-------------------------------|-------------------------------|
| 34                  | 0.6925                        | 1.3974                        | 85                  | 0.7988                        | 1.2365                        |
| 35                  | 0.6965                        | 1.3908                        | 86                  | 0.7999                        | 1.2350                        |
| 36                  | 0.7004                        | 1.3844                        | 87                  | 0.8010                        | 1.2335                        |
| 37                  | 0.7041                        | 1.3784                        | 88                  | 0.8020                        | 1.2320                        |
| 38                  | 0.7077                        | 1.3726                        | 89                  | 0.8031                        | 1.2306                        |
| 39                  | 0.7111                        | 1.3670                        | 90                  | 0.8041                        | 1.2292                        |
| 40                  | 0.7144                        | 1.3617                        | 91                  | 0.8051                        | 1.2278                        |
| 41                  | 0.7176                        | 1.3566                        | 92                  | 0.8061                        | 1.2264                        |
| 42                  | 0.7207                        | 1.3517                        | 93                  | 0.8071                        | 1.2251                        |
| 43                  | 0.7237                        | 1.3470                        | 94                  | 0.8081                        | 1.2237                        |
| 44                  | 0.7266                        | 1.3425                        | 95                  | 0.8091                        | 1.2224                        |
| 45                  | 0.7294                        | 1.3381                        | 96                  | 0.8100                        | 1.2212                        |
| 46                  | 0.7321                        | 1.3339                        | 97                  | 0.8109                        | 1.2199                        |
| 47                  | 0.7348                        | 1.3298                        | 98                  | 0.8118                        | 1.2187                        |
| 48                  | 0.7373                        | 1.3259                        | 99                  | 0.8128                        | 1.2175                        |
| 49                  | 0.7398                        | 1.3221                        | 100                 | 0.8136                        | 1.2163                        |
| 50                  | 0.7422                        | 1.3184                        |                     |                               |                               |

Table 2 (con't). 95% Confidence Interval Factors for Poisson-Distributed Events

