Supplemental data file

Inherent limitations of rare event detection ${ }^{1-3}$

Three principle issues in rare event detection were evaluated. First, what is the lowest number of CTC that would need to be in a tube of blood to detect one CTC? Second, what is the theoretical level of variability in measuring the reproducibility of rare events based on a random distribution? Third, if one obtains a given result in clinical practice, what is the range of CTC numbers that might have actually been in the tube based on statistical considerations?

The probability of a random sample of size n containing x events in a total of n tests using the binomial distribution is given by the following formula:

$$
\begin{aligned}
\mathrm{P}(x) & =\frac{n!}{x!(n-x!)} p^{x}(1-p)^{n-x}=\binom{n}{x} p^{x}(1-p)^{n-x} \\
\text { Where: } \quad \mathrm{P}(x) & =\text { the probability of an event }(x) \text { in a unit of space } \\
x & =\text { number of events } \\
p & =\text { probability of detecting (or observing) } x \text { events } \\
1-p & =\text { probability of not detecting (or observing) } x \text { events } \\
n & =\text { sample size }
\end{aligned}
$$

The mean μ and variance σ^{2} of the binomial distribution are given by the following:

$$
\mu=n p \quad \text { and } \quad \sigma^{2}=n p(1-p)
$$

The minimum average number of CTCs (n) required to be present in a single 7.5 mL sample of blood to ensure the detection on average of at least 1 CTC (μ) given an average assay recovery of CTCs spiked into 7.5 mL of blood of $\sim 85 \%(p)$, is therefore:

$$
\begin{gathered}
\mu=n p \\
1=n(85 \%) \\
n=1 / 0.85 \sim=1.2 \text { CTC }
\end{gathered}
$$

The standard deviation σ for this value of n would be determined as follows:

$$
\sigma=\sqrt{n p(1-p)}=\sqrt{1.2 * 0.85(1-0.85)}=0.4
$$

These results indicate that in order to detect on average 1 CTC with an average assay recovery of 85%, a 7.5 mL blood sample would have to contain on average 1.2 CTCs.

For CTC detection, imagine a volume of blood that has been divided into CTC size units. This creates a very large sample size n, with a very small probability p of any single volume n containing an event x (i.e. a CTC). In this situation, with a large n and a small p, the Poisson distribution can be used to approximate the binomial probability. The Poisson distribution is important in describing random (or rare) occurrences where each sample (or volume) n has an equal probability of containing an event x, such as is the case with the distribution of CTC in a volume of blood.

The probability of a random sample of size n containing x events can be calculated using the Poisson distribution and is given by the following formula:

$$
P(x)=\frac{e^{-\mu} \mu^{x}}{x!}
$$

An interesting and useful property of a Poisson distribution is that the variance σ^{2} is equal to the mean μ. This would make the standard deviation equal to $\sqrt{\mu}$, and the theoretical coefficient of variation (\%CV) equal to $\frac{\sqrt{\mu}}{\mu}$.

Using the above \%CV formula, at CTC counts of 4, 18, 71, 286, and 1142, the inherent \%CVs of actually counting those numbers of events would be predicted to be $50 \%, 24 \%, 12 \%, 6 \%$, and 3%, respectively. These predicted $\%$ CVs are very similar to the observed $\%$ CVs of $47 \%, 22 \%, 11 \%, 2 \%$, and 5%, respectively, shown in Table 1. These findings suggest that the CellSearch assay does not add additional variation to the inherent variation of counting random events due to the Poisson distribution.

When calculating confidence intervals (CI) for rare events (i.e. CTC counts), one must keep in mind that the Poisson distribution assumes the shape of a normal distribution when the number of events is greater than about 100. So we use a Poisson distribution for rare events (when the number of events is less than 100), but when the number of events is greater than 100, we can use a modified formula from the normal distribution to determine the 95% Cl's.

Table 2 provides the lower and upper confidence factors used to calculate an exact $95 \% \mathrm{Cl}$ based on a specified number of events (or counts), from 1 to 100 . To calculate the exact $95 \% \mathrm{Cl}$, multiply the number of events (or counts) by the associated confidence factors and add these values separately to the count. For example, in Table 1, the average observed number of CTC at the 18 CTC spike was 22 CTC (122\% recovery). The lower and upper confidence limits are calculated using the confidence factors provided in Table 2. The factors for 22 events are 0.6267 and 1.5140 for the lower and upper limits of the $95 \% \mathrm{CI}$, respectively. Therefore, the exact $95 \% \mathrm{CI}$ for the average CTC count of 22 would be:

$$
\begin{aligned}
& \text { Lower limit }=22(0.6267)=13.8 \\
& \text { Upper limit }=22(1.5140)=33.3
\end{aligned}
$$

Thus, for the average \% recovery of 122% (22 / 18 CTC)

$$
\begin{aligned}
\text { Lower limit } & =(14 / 18) * 100 \%=77.7 \% \\
\text { Upper limit } & =(33 / 18) * 100 \%=183.3 \%
\end{aligned}
$$

95% C.I. for average of 122% recovery $=78 \%$ to 183%
The formula for the calculation of an approximate $95 \% \mathrm{CI}$ for a Poisson distribution with more than 100 counts μ is:

$$
\text { Approximate C.I. }=\mu \pm z_{\alpha} \sqrt{\mu}
$$

Where: $z_{\alpha}=1.645$ for a $90 \% \mathrm{Cl}, 1.96$ for a $95 \% \mathrm{CI}$, or 2.58 for a $99 \% \mathrm{Cl}$

Lastly, similar considerations apply to the issue of estimating the range of CTC numbers when a given number is measured by the assay. Recall that for a Poisson distribution the variance σ^{2} is equal to the mean μ, which would make the standard
deviation equal to the square root of the mean $\sigma=\sqrt{\mu}$. For a sample size of $n=1, \sigma$ is indeterminate, as we have no knowledge of σ from a single determination (x_{1}). Although σ is unknown, it is possible to determine the true mean value μ within a certain confidence interval $\left[\mu_{1}, \mu_{2}\right.$]. For $n \rightarrow \infty$, a Poisson distribution with a mean μ and standard deviation σ is known. If we take one sample from this distribution ($n=1$), this sample will contain x_{1} number of CTCs. If we assume that this sample falls within a given confidence interval $\left(z_{\alpha}\right)$, the true average falls within $\left[\mu_{1}, \mu_{2}\right]$ with the same given confidence, if μ_{1} and μ_{2} are defined as follows:

$$
x_{1}=\mu_{1}-z_{\alpha} \sqrt{\mu_{1}} \text { and } x_{1}=\mu_{2}+z_{\alpha} \sqrt{\mu_{2}}
$$

when you solve the above equation for μ_{1} and μ_{2}, you get

$$
\begin{aligned}
& \mu_{1}=\left(x_{1}+z_{\alpha}\right)-\frac{\sqrt{\left(2 z_{\alpha}+2 x_{1}\right)^{2}-4 x_{1}{ }^{2}}}{2} \\
& \mu_{2}=\left(x_{1}+z_{\alpha}\right)+\frac{\sqrt{\left(2 z_{\alpha}+2 x_{1}\right)^{2}-4 x_{1}^{2}}}{2}
\end{aligned}
$$

Figure 1 shows μ_{1} and μ_{2} for a $95 \% \mathrm{Cl}\left(z_{\alpha}=1.96\right.$, solid line), the $68 \% \mathrm{CI}\left(z_{\alpha}=\right.$ 1.00, short dashed line), and the $38 \% \mathrm{Cl}\left(z_{\alpha}=0.50\right.$, long dashed line) for x_{1} values of 0 to 25 CTC. The range of the true average, μ, based on a single blood draw resulting in x_{1} number of CTC, can be read from Figure 1 with 38%, 68\%, and 95% confidence. For example when 5 CTC are detected ($x_{1}=5$), you can be 95% confident that the true average lies between the 2 and 12 CTC, 68% confident that the true average lies between 3 and 9 CTC, and 38\% confident that the true average lies between 3 and 8 CTC.

REFERENCES

1. Motulsky, H. Intuitive Biostatistics, pp. 245-249. New York: Oxford University Press, 1995.
2. Box, G.E.P., Hunter, W.G., and Hunter, J.S. Statistics for experimenters. An introduction to design, data analysis, and model building, pp. 137-145. New York: John Wiley and Sons, 1978.
3. Daly, L. Simple SAS macros for the calculation of exact binomial and Poisson confidence limits. Comput. Biol. Med., 22: 351-361, 1992.

Table 1. Method accuracy measured by recovery of SKBR-3 tumor cells spiked into 7.5 mL blood of 5 healthy donors

Expected	Observed CTC Count			\% Recovery		\%CV
CTC Count	Average	StDev	95\% C.I.	Average	95\% C.I.	
$\mathbf{4}$	4	2	$1-11$	110	$25-275$	47
$\mathbf{1 8}$	22	5	$14-33$	122	$78-183$	22
$\mathbf{7 1}$	70	8	$55-88$	99	$77-124$	11
$\mathbf{2 8 6}$	247	5	$216-277$	86	$76-97$	2
$\mathbf{1 1 4 2}$	971	46	$910-1032$	85	$80-90$	5

Table 2. 95\% Confidence Interval Factors for Poisson-Distributed Events

number of events	95\% CI, Lower Limit Factor	95\% CI, Upper Limit Factor	number of events	95\% CI, Lower Limit Factor	95\% CI, Upper Limit Factor
0	0.0000	3.7000	51	0.7446	1.3148
1	0.0253	5.5716	52	0.7468	1.3114
2	0.1211	3.6123	53	0.7491	1.3080
3	0.2062	2.9224	54	0.7512	1.3048
4	0.2725	2.5604	55	0.7533	1.3016
5	0.3247	2.3337	56	0.7554	1.2986
6	0.3670	2.1766	57	0.7574	1.2956
7	0.4021	2.0604	58	0.7593	1.2927
8	0.4317	1.9704	59	0.7612	1.2899
9	0.4573	1.8983	60	0.7631	1.2872
10	0.4795	1.8390	61	0.7649	1.2845
11	0.4992	1.7893	62	0.7667	1.2820
12	0.5167	1.7468	63	0.7684	1.2794
13	0.5325	1.7100	64	0.7701	1.2770
14	0.5467	1.6778	65	0.7718	1.2746
15	0.5597	1.6493	66	0.7734	1.2722
16	0.5716	1.6239	67	0.7750	1.2700
17	0.5825	1.6011	68	0.7765	1.2677
18	0.5927	1.5804	69	0.7781	1.2656
19	0.6021	1.5616	70	0.7795	1.2634
20	0.6108	1.5444	71	0.7810	1.2614
21	0.6190	1.5286	72	0.7824	1.2593
22	0.6267	1.5140	73	0.7838	1.2573
23	0.6339	1.5005	74	0.7852	1.2554
24	0.6407	1.4879	75	0.7866	1.2535
25	0.6471	1.4762	76	0.7879	1.2516
26	0.6532	1.4652	77	0.7892	1.2498
27	0.6590	1.4549	78	0.7905	1.2480
28	0.6645	1.4453	79	0.7917	1.2463
29	0.6697	1.4362	80	0.7929	1.2446
30	0.6747	1.4276	81	0.7941	1.2429
31	0.6795	1.4194	82	0.7953	1.2413
32	0.6840	1.4117	83	0.7965	1.2397
33	0.6884	1.4044	84	0.7976	1.2381

Table 2 (con't). 95\% Confidence Interval Factors for Poisson-Distributed Events

| number of
 events | 95\% CI, Lower
 Limit Factor | 95% CI, Upper
 Limit Factor | | number of
 events | 95\% CI, Lower
 Limit Factor | 95% CI, Upper
 Limit Factor |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 34 | 0.6925 | 1.3974 | | 85 | 0.7988 | 1.2365 |
| 35 | 0.6965 | 1.3908 | | 86 | 0.7999 | 1.2350 |
| 36 | 0.7004 | 1.3844 | | 87 | 0.8010 | 1.2335 |
| 37 | 0.7041 | 1.3784 | | 88 | 0.8020 | 1.2320 |
| 38 | 0.7077 | 1.3726 | | 89 | 0.8031 | 1.2306 |
| 39 | 0.7111 | 1.3670 | | 90 | 0.8041 | 1.2292 |
| 40 | 0.7144 | 1.3617 | | 91 | 0.8051 | 1.2278 |
| 41 | 0.7176 | 1.3566 | | 92 | 0.8061 | 1.2264 |
| 42 | 0.7207 | 1.3517 | | 93 | 0.8071 | 1.2251 |
| 43 | 0.7237 | 1.3470 | | 94 | 0.8081 | 1.2237 |
| 44 | 0.7266 | 1.3425 | | 95 | 0.8091 | 1.2224 |
| 45 | 0.7294 | 1.3381 | | 96 | 0.8100 | 1.2212 |
| 46 | 0.7321 | 1.3339 | | 97 | 0.8109 | 1.2199 |
| 47 | 0.7348 | 1.3298 | | 98 | 0.8118 | 1.2187 |
| 48 | 0.7373 | 1.3259 | | 99 | 0.8128 | 1.2175 |
| 49 | 0.7398 | 1.3221 | | 100 | 0.8136 | 1.2163 |
| 50 | 0.7422 | 1.3184 | | | | |

Appendix Figure 1

