American Association for Cancer Research
Browse
15417786mcr090031-sup-supplementary_data.pdf (6.45 MB)

Supplementary Data from PU.1 Activation Relieves GATA-1–Mediated Repression of Cebpa and Cbfb during Leukemia Differentiation

Download (6.45 MB)
journal contribution
posted on 2023-04-03, 18:21 authored by Pavel Burda, Nikola Curik, Juraj Kokavec, Petra Basova, Dana Mikulenkova, Arthur I. Skoultchi, Jiri Zavadil, Tomas Stopka
Supplementary Data from PU.1 Activation Relieves GATA-1–Mediated Repression of Cebpa and Cbfb during Leukemia Differentiation

History

ARTICLE ABSTRACT

Hematopoietic transcription factors GATA-1 and PU.1 bind each other on DNA to block transcriptional programs of undesired lineage during hematopoietic commitment. Murine erythroleukemia (MEL) cells that coexpress GATA-1 and PU.1 are blocked at the blast stage but respond to molecular removal (downregulation) of PU.1 or addition (upregulation) of GATA-1 by inducing terminal erythroid differentiation. To test whether GATA-1 blocks PU.1 in MEL cells, we have conditionally activated a transgenic PU.1 protein fused with the estrogen receptor ligand-binding domain (PUER), resulting in activation of a myeloid transcriptional program. Gene expression arrays identified components of the PU.1-dependent transcriptome negatively regulated by GATA-1 in MEL cells, including CCAAT/enhancer binding protein α (Cebpa) and core-binding factor, β subunit (Cbfb), which encode two key hematopoietic transcription factors. Inhibition of GATA-1 by small interfering RNA resulted in derepression of PU.1 target genes. Chromatin immunoprecipitation and reporter assays identified PU.1 motif sequences near Cebpa and Cbfb that are co-occupied by PU.1 and GATA-1 in the leukemic blasts. Significant derepression of Cebpa and Cbfb is achieved in MEL cells by either activation of PU.1 or knockdown of GATA-1. Furthermore, transcriptional regulation of these loci by manipulating the levels of PU.1 and GATA-1 involves quantitative increases in a transcriptionally active chromatin mark: acetylation of histone H3K9. Collectively, we show that either activation of PU.1 or inhibition of GATA-1 efficiently reverses the transcriptional block imposed by GATA-1 and leads to the activation of a myeloid transcriptional program directed by PU.1. (Mol Cancer Res 2009;7(10):1693–703)

Usage metrics

    Molecular Cancer Research

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC