American Association for Cancer Research
Browse
- No file added yet -

Supplementary Data from PKM2 Is Essential for Bladder Cancer Growth and Maintenance

Download (86.99 kB)
journal contribution
posted on 2023-03-31, 04:43 authored by Yong Xia, Xing Wang, Yan Liu, Ellen Shapiro, Herbert Lepor, Moon-Shong Tang, Tung-Tien Sun, Xue-Ru Wu
Supplementary Data from PKM2 Is Essential for Bladder Cancer Growth and Maintenance

Funding

United States Veterans Affairs Office of Research and Development

Research Career Scientist

United States Department of Veterans Affairs

Find out more...

NIH

History

ARTICLE ABSTRACT

Pyruvate kinase M2 (PKM2) has been shown to promote tumorigenesis by facilitating the Warburg effect and enhancing the activities of oncoproteins. However, this paradigm has recently been challenged by studies in which the absence of PKM2 failed to inhibit and instead accelerated tumorigenesis in mouse models. These results seem inconsistent with the fact that most human tumors overexpress PKM2. To further elucidate the role of PKM2 in tumorigenesis, we investigated the effect of PKM2 knockout in oncogenic HRAS-driven urothelial carcinoma. While PKM2 ablation in mouse urothelial cells did not affect tumor initiation, it impaired the growth and maintenance of HRAS-driven tumors. Chemical inhibition of PKM2 recapitulated these effects. Both conditions substantially reduced complex formation of PKM2 with STAT3, their nuclear translocation, and HIF1α- and VEGF-related angiogenesis. The reduction in nuclear STAT3 in the absence of PKM2 also correlated with decreased autophagy and increased apoptosis. Time-controlled, inducible PKM2 overexpression in simple urothelial hyperplasia did not trigger tumorigenesis, while overexpression of PKM2, but not PKM1, in nodular urothelial hyperplasia with angiogenesis strongly accelerated tumorigenesis. Finally, in human patients, PKM2 was overexpressed in low-grade nonmuscle-invasive and high-grade muscle-invasive bladder cancer. Based on these data, PKM2 is not required for tumor initiation but is essential for tumor growth and maintenance by enhancing angiogenesis and metabolic addiction. The PKM2–STAT3–HIF1α/VEGF signaling axis may play a critical role in bladder cancer and may serve as an actionable therapeutic target. Genetic manipulation and pharmacologic inhibition of PKM2 in mouse urothelial lesions highlight its essential role in promoting angiogenesis and metabolic addiction, events indispensable for tumor growth and maintenance.

Usage metrics

    Cancer Research

    Categories

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC