American Association for Cancer Research
Browse
can-21-1114_supplementary_data_suppsmm1.docx (32.55 kB)

Supplementary Data from PAX9 Determines Epigenetic State Transition and Cell Fate in Cancer

Download (32.55 kB)
journal contribution
posted on 2023-03-30, 14:02 authored by Zibo Zhao, Aileen P. Szczepanski, Natsumi Tsuboyama, Hiam Abdala-Valencia, Young Ah Goo, Benjamin D. Singer, Elizabeth T. Bartom, Feng Yue, Lu Wang

Supplemental Materials & Methods

Funding

National Heart, Lung, and Blood Institute (NHLBI)

National Cancer Institute (NCI)

United States Department of Health and Human Services

Find out more...

NIH Office of the Director (OD)

History

ARTICLE ABSTRACT

Abnormalities in genetic and epigenetic modifications can lead to drastic changes in gene expression profiles that are associated with various cancer types. Small cell lung cancer (SCLC) is an aggressive and deadly form of lung cancer with limited effective therapies currently available. By utilizing a genome-wide CRISPR-Cas9 dropout screen in SCLC cells, we identified paired box protein 9 (PAX9) as an essential factor that is overexpressed in human malignant SCLC tumor samples and is transcriptionally driven by the BAP1/ASXL3/BRD4 epigenetic axis. Genome-wide studies revealed that PAX9 occupies distal enhancer elements and represses gene expression by restricting enhancer activity. In multiple SCLC cell lines, genetic depletion of PAX9 led to significant induction of a primed-active enhancer transition, resulting in increased expression of a large number of neural differentiation and tumor-suppressive genes. Mechanistically, PAX9 interacted and cofunctioned with the nucleosome remodeling and deacetylase (NuRD) complex at enhancers to repress nearby gene expression, which was reversed by pharmacologic HDAC inhibition. Overall, this study provides mechanistic insight into the oncogenic function of the PAX9/NuRD complex epigenetic axis in human SCLC and suggests that reactivation of primed enhancers may have potential therapeutic efficacy in treating SCLC expressing high levels of PAX9. A genome-wide screen in small cell lung cancer reveals PAX9/NuRD-mediated epigenetic enhancer silencing and tumor progression, supporting the development of novel personalized therapeutic approaches targeting the PAX9-regulated network.

Usage metrics

    Cancer Research

    Categories

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC