American Association for Cancer Research
Browse
- No file added yet -

Supplementary Data from Inhibition of the Translation Initiation Factor eIF4A Enhances Tumor Cell Radiosensitivity

Download (14.21 kB)
journal contribution
posted on 2023-04-03, 19:05 authored by Stacey L. Lehman, Theresa Wechsler, Kayla Schwartz, Lauren E. Brown, John A. Porco, William G. Devine, Jerry Pelletier, Uma T. Shankavaram, Kevin Camphausen, Philip J. Tofilon
Supplementary Data from Inhibition of the Translation Initiation Factor eIF4A Enhances Tumor Cell Radiosensitivity

Funding

Intramural Program, NCI

NIH

History

ARTICLE ABSTRACT

A fundamental component of cellular radioresponse is the translational control of gene expression. Because a critical regulator of translational control is the eukaryotic translation initiation factor 4F (eIF4F) cap binding complex, we investigated whether eIF4A, the RNA helicase component of eIF4F, can serve as a target for radiosensitization. Knockdown of eIF4A using siRNA reduced translational efficiency, as determined from polysome profiles, and enhanced tumor cell radiosensitivity as determined by clonogenic survival. The increased radiosensitivity was accompanied by a delayed dispersion of radiation-induced γH2AX foci, suggestive of an inhibition of DNA double-strand break repair. Studies were then extended to (-)-SDS-1–021, a pharmacologic inhibitor of eIF4A. Treatment of cells with the rocaglate (-)-SDS-1–021 resulted in a decrease in translational efficiency as well as protein synthesis. (-)-SDS-1–021 treatment also enhanced the radiosensitivity of tumor cell lines. This (-)-SDS-1–021-induced radiosensitization was accompanied by a delay in radiation-induced γH2AX foci dispersal, consistent with a causative role for the inhibition of double-strand break repair. In contrast, although (-)-SDS-1–021 inhibited translation and protein synthesis in a normal fibroblast cell line, it had no effect on radiosensitivity of normal cells. Subcutaneous xenografts were then used to evaluate the in vivo response to (-)-SDS-1–021 and radiation. Treatment of mice bearing subcutaneous xenografts with (-)-SDS-1–021 decreased tumor translational efficiency as determined by polysome profiles. Although (-)-SDS-1–021 treatment alone had no effect on tumor growth, it significantly enhanced the radiation-induced growth delay. These results suggest that eIF4A is a tumor-selective target for radiosensitization.

Usage metrics

    Molecular Cancer Therapeutics

    Categories

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC