American Association for Cancer Research
cir-22-0426_supplementary_data_suppsf1-sf10.st1-st3_sm1.docx (9.89 MB)

Supplementary Data from Hedgehog Signaling Regulates Treg to Th17 Conversion Through Metabolic Rewiring in Breast Cancer

Download (9.89 MB)
journal contribution
posted on 2023-04-14, 14:40 authored by Dominique C. Hinshaw, Gloria A. Benavides, Brandon J. Metge, Courtney A. Swain, Sarah C. Kammerud, Heba A. Alsheikh, Amr Elhamamsy, Dongquan Chen, Victor Darley-Usmar, Jeffrey C. Rathmell, Robert S. Welner, Rajeev S. Samant, Lalita A. Shevde

Supplementary Figures and Table



The tumor immune microenvironment dynamically evolves to support tumor growth and progression. Immunosuppressive regulatory T cells (Treg) promote tumor growth and metastatic seeding in patients with breast cancer. Deregulation of plasticity between Treg and Th17 cells creates an immune regulatory framework that enables tumor progression. Here, we discovered a functional role for Hedgehog (Hh) signaling in promoting Treg differentiation and immunosuppressive activity, and when Hh activity was inhibited, Tregs adopted a Th17-like phenotype complemented by an enhanced inflammatory profile. Mechanistically, Hh signaling promoted O-GlcNAc modifications of critical Treg and Th17 transcription factors, Foxp3 and STAT3, respectively, that orchestrated this transition. Blocking Hh reprogramed Tregs metabolically, dampened their immunosuppressive activity, and supported their transdifferentiation into inflammatory Th17 cells that enhanced the recruitment of cytotoxic CD8+ T cells into tumors. Our results demonstrate a previously unknown role for Hh signaling in the regulation of Treg differentiation and activity and the switch between Tregs and Th17 cells in the tumor microenvironment.

Usage metrics

    Cancer Immunology Research