posted on 2023-10-13, 07:20authored byZijing Wang, Nan Zhang, Miao Zhang, Yao Jiang, Aik Seng Ng, Esther Bridges, Wei Zhang, Xin Zeng, Qi Luo, Jiabien Liang, Balázs Győrffy, Philip Hublitz, Zhu Liang, Roman Fischer, David Kerr, Adrian L. Harris, Shijie Cai
Tables and figure legends
Funding
National Science Fund for Distinguished Young Scholars (National Science Foundation for Distinguished Young Scholars)
History
ARTICLE ABSTRACT
GTP cyclohydrolase (GCH1) is the rate-limiting enzyme for tetrahydrobiopterin (BH4) biosynthesis. The catalysis of BH4 biosynthesis is tightly regulated for physiological neurotransmission, inflammation, and vascular tone. Paradoxically, BH4 has emerged as an oncometabolite regulating tumor growth, but the effects on tumor development remain controversial. Here, we found that GCH1 potentiated the growth of triple-negative breast cancer (TNBC) and HER2+ breast cancer and transformed nontumor breast epithelial cells. Independent of BH4 production, GCH1 protein induced epithelial-to-mesenchymal transition by binding to vimentin (Vim), which was mediated by HSP90. Conversely, GCH1 ablation impaired tumor growth, suppressed Vim in TNBC, and inhibited EGFR/ERK signaling while activating the p53 pathway in estrogen receptor–positive tumor cells. GCH1 deficiency increases tumor cell sensitivity to HSP90 inhibition and endocrine treatments. In addition, high GCH1 correlated with poor breast cancer survival. Together, this study reveals an enzyme-independent oncogenic role of GCH1, presenting it as a potential target for therapeutic development.
GTP cyclohydrolase functions as an oncogene in breast cancer and binds vimentin to induce epithelial-to-mesenchymal transition independently of its enzyme activity, which confers targetable vulnerabilities for developing breast cancer treatment strategies.